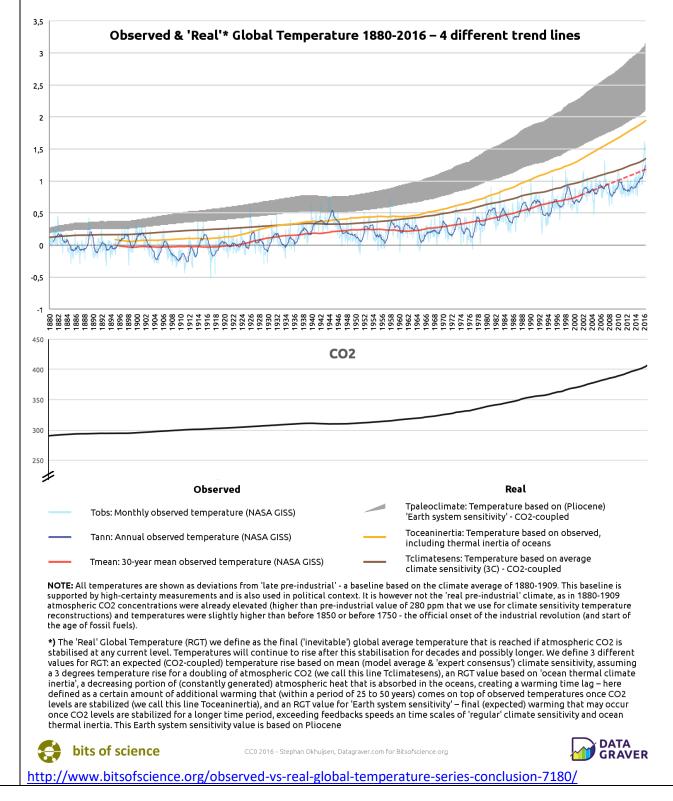
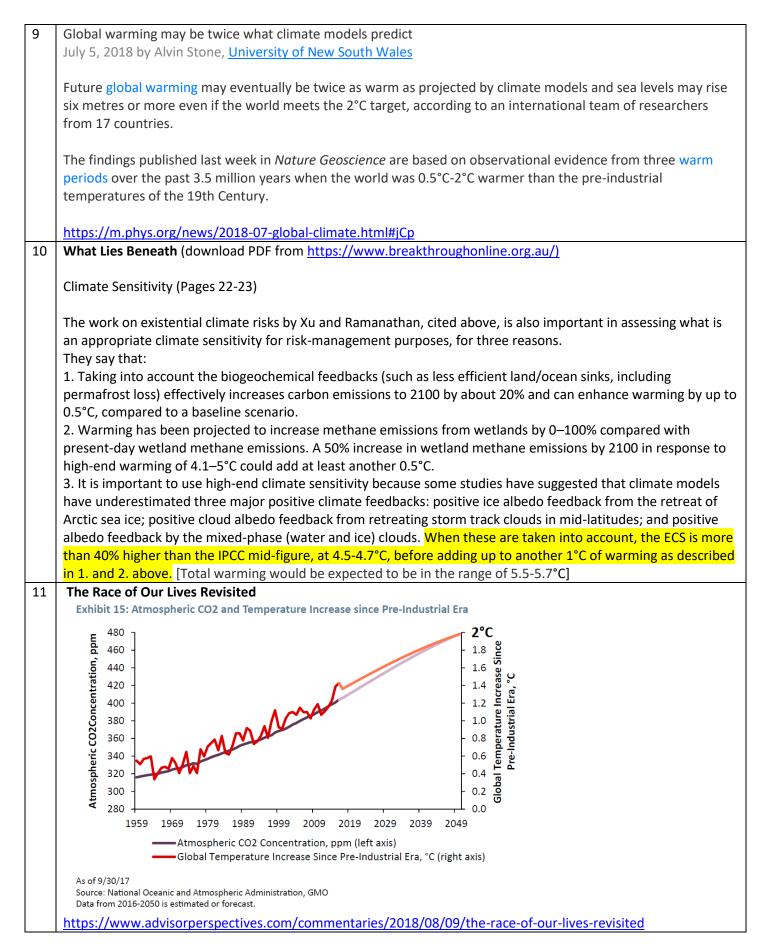

- The global average temperature has been increasing at about 0.18°C per decade since about 1970, and the annual temperature is significantly affected by the El Nino/La Nina oscillation^{1,19}
- Although the years 2015-2019 were significantly above the average of the preceding 10 years^{2,19}, they are pretty much in line with the expected increases based on 1970-2014 temperature increases^{1,3,4}
- A 1.5°C temperature increase is likely within 8-12 years^{5,20,21,22}, implying almost a doubling of the current rate of temperature increase⁶ (perhaps because it takes a while for atmosphere to adjust to the presence of greenhouse gases and about 50% of all emissions have occurred in the last 20 years).
- An temperature increase of 2.0°C by 2050 seems plausable^{11,22}
- Climate models have done a pretty good job of predicting the actual temperature to date⁷
- The future temperature depends on CO2 emissions (anthropogenic and natural), non-CO2 radiative forcings, ocean and biosphere uptake of CO2, surface albedo changes, and clouds. Since none of these can be predicted with any precision, accurately estimating the temperature in 2100 is very problematic
- But future temperature increases are likely to be much more than the current models have predicted^{8,9,10}
- If we don't do a good job of reducing emissions and we don't do any significant carbon capture and storage then we might expect an equilibrium temperature of at least 4° C in 2100¹²
- It is important to use high-end climate sensitivity because some studies have suggested that climate models have underestimated three major positive climate feedbacks. This would result in a temperature increase of about 5.5-5.7°C by 2100 for the IPCC's 2.0°C carbon budget.¹⁰

Added 1/15/2021

- The Global surface temperature in 2020 of +1.3°C was in a virtual dead-heat with 2016 for warmest year and the annual rate of change could be imcreasing²⁶ (*Note: the value for the increase depends on the base year used*)
- Earth's ability to absorb nearly a third of human-caused carbon emissions through plants could be halved within the next two decades at the current rate of warming^{27,28}
- Threshold for dangerous warming will likely be crossed between 2026-2042^{29,30}
- Warming already baked in will blow past climate goals³¹
- Warming could accelerate if coal burning is significantly reduced over a short period of time^{32,33}




	b 2									
	5 -	Observed	d (NOAA)		1 1	I I	1 1	1 1 1		
	1.8		tive (mean) tive (25-75th pe	reantilos)					_	
	1.0		ative (25-7501 per	(centiles)						
	ω 1.6	IPO nega	ative (25-75th pe	ercentiles)				- 1-	1 million	
	°C)	1.5°C Pa	aris target					-	1	
	July ((1850-190	00 baseline)				1		14	
	oma					-	-	y -		
	Annual global mean surface temperature anomaly (°C) c t c t c c c	-				1 m	Jose .			
	oba				000	hor		1	i	
		-						1	! -	
	gune			A	A I'EN					
	A # 0.8	- 0-0	Jog.	10 00	10			1	i -	
		1	8						1	
	0.6								-	
								1.	1	
	0.4	2000 2002 2	004 2006 200	9 2010 201	2 2014 2016	2018 2020 1	1 1 1		20 2022	
		2000 2002 2	004 2006 200	0 2010 201	2 2014 2016 Year		2022 2024 20	120 2028 203	2032	
	Draiactad t	mporatura	ricoc with I	DO in noci			nactivo mo	da (blua)	'Honloy and	d King, 2017)
	FIOJECIEU IE	emperature	TISES WILLI	PO III posit	ive moue (reuj unu ne	guive mo	ue (biue) (nemey und	<i>i</i> Killy, 2017)
	IACOB at a	l. the world	t is likely to	nass the +	1 5°C three	shold arour	nd 2026 for	RCD8 5 ar	d "for the	intermediate
	RCP4.5 path		•	•						
	means that	-						Junu 2030.		noou, this
	incans that	a + 1.5 C W		nent.						
	KONG AND	WANG: the	e threshold	of 1.5°C w	arming wil	l be reache	d in 2027	2026. and 2	2023 under	RCP2.6
	RCP4.5, RCI			01 2.0 0 1				2020, and .		1101 210)
		0.0) (00000								
	XU and RAI	MANTHAN:	suggesting	g that the	1.5°C woul	d be excee	d around 2	028.		
			00 (0						
	ROGELJ et a	al: then SSP	5 exceeds 1	5°C in 20	29 and SSP	4 by 2031.				
						•	is-closer-th	ian-we-ima	gine-just-a	-decade-away/
	<u>https://ww</u>					•	<u>is-closer-th</u>	<u>ian-we-ima</u>	<u>gine-just-a</u>	-decade-away/
	<u>https://ww</u> Temp				<u>-05/1-5c-o</u>	f-warming-	<u>is-closer-th</u>	ian-we-ima	<u>gine-just-a</u>	<u>-decade-away/</u>
	https://ww Temp Incr per	w.resilience	e.org/storie:	<u>s/2018-04</u>	<u>-05/1-5c-o</u> Ye	f-warming-				<u>-decade-away/</u>
	<u>https://ww</u> Temp				<u>-05/1-5c-o</u>	f-warming-	<u>is-closer-th</u> 2040	an-we-ima	gine-just-a 2050	-decade-away/
	https://ww Temp Incr per	w.resilience	e.org/storie:	<u>s/2018-04</u>	<u>-05/1-5c-o</u> Ye	f-warming-				<u>-decade-away/</u>
	https://ww Temp Incr per Decade	w.resilience	e.org/stories	<u>s/2018-04</u> 2025	<u>-05/1-5c-o</u> Ye 2030	f-warming- ar 2035	2040	2045	2050	<u>-decade-away/</u>
	https://ww Temp Incr per Decade 0.17 0.20	2017 2.1.10 1.10	2020 1.16 1.17	2025 1.24 1.27	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37	f-warming- ar 2035 1.41 1.47	2040 1.50 1.57	2045 1.58 1.67	2050 1.67 1.77	<u>-decade-away/</u>
	https://ww Temp Incr per Decade 0.17 0.20 0.25	2017 2017 1.10 1.10 1.10	2020 1.16 1.17 1.18	2025 1.24 1.27 1.31	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43	f-warming- ar 2035 1.41 1.47 1.56	2040 1.50 1.57 1.68	2045 1.58 1.67 1.81	2050 1.67 1.77 1.93	<u>-decade-away/</u>
	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30	2017 2017 1.10 1.10 1.10 1.10 1.10	2020 1.16 1.17 1.18 1.20	2025 1.24 1.27 1.31 1.35	- <u>05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50	f-warming- ar 2035 1.41 1.47 1.56 1.65	2040 1.50 1.57 1.68 1.80	2045 1.58 1.67 1.81 1.95	2050 1.67 1.77 1.93 2.10	<u>-decade-away/</u>
	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35	2017 2017 1.10 1.10 1.10 1.10 1.10 1.10	2020 1.16 1.17 1.18 1.20 1.22	2025 1.24 1.27 1.31 1.35 1.39	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50 1.57	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74	2040 1.50 1.57 1.68	2045 1.58 1.67 1.81	2050 1.67 1.77 1.93	<u>-decade-away/</u>
;	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h	2017 1.10 1.10 1.10 1.10 1.10 1.10 ave climate	2020 1.16 1.17 1.18 1.20 1.22 e models pr	2025 1.24 1.27 1.31 1.35 1.39 ojected glo	<u>Ye</u> 2030 1.33 1.37 1.43 1.50 1.57 obal warm	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74	2040 1.50 1.57 1.68 1.80	2045 1.58 1.67 1.81 1.95	2050 1.67 1.77 1.93 2.10	<u>-decade-away/</u>
5	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h	2017 1.10 1.10 1.10 1.10 1.10 1.10 ave climate	2020 1.16 1.17 1.18 1.20 1.22	2025 1.24 1.27 1.31 1.35 1.39 ojected glo	<u>Ye</u> 2030 1.33 1.37 1.43 1.50 1.57 obal warm	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74	2040 1.50 1.57 1.68 1.80	2045 1.58 1.67 1.81 1.95	2050 1.67 1.77 1.93 2.10	<u>-decade-away/</u>
5	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h By Zeke Har	2017 2017 1.10 1.10 1.10 1.10 1.10 ave climate usfatherTue	2020 1.16 1.17 1.18 1.20 1.22 e models pr esday, Octol	2025 1.24 1.27 1.31 1.35 1.39 ojected glo ber 31, 202	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50 1.57 obal warm	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74 ing?	2040 1.50 1.57 1.68 1.80 1.92	2045 1.58 1.67 1.81 1.95 2.09	2050 1.67 1.77 1.93 2.10 2.27	
7	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h By Zeke Har Climate mo	2017 1.10 1.10 1.10 1.10 1.10 1.10 ave climate usfatherTue dels publisł	2020 1.16 1.17 1.18 1.20 1.22 e models pr esday, Octol hed since 19	2025 1.24 1.27 1.31 1.35 1.39 ojected glo ber 31, 202 073 have g	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50 1.57 obal warm 17 enerally be	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74 ing?	2040 1.50 1.57 1.68 1.80 1.92	2045 1.58 1.67 1.81 1.95 2.09	2050 1.67 1.77 1.93 2.10 2.27 ure warmir	ng. While some
;	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h By Zeke Hau Climate mo were too lo	2017 1.10 1.10 1.10 1.10 1.10 1.10 ave climate usfatherTue dels publish w and some	2020 1.16 1.17 1.18 1.20 1.22 e models pr esday, Octol hed since 19 e too high, t	2025 1.24 1.27 1.31 1.35 1.39 ojected glo ber 31, 202 073 have g they all sho	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50 1.57 obal warm 17 enerally be ow outcom	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74 ing?	2040 1.50 1.57 1.68 1.80 1.92	2045 1.58 1.67 1.81 1.95 2.09	2050 1.67 1.77 1.93 2.10 2.27 ure warmir actually oc	ng. While some curred,
; ,	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h By Zeke Han Climate mo were too lo especially w	2017 2017 1.10 1.10 1.10 1.10 1.10 ave climate usfatherTue dels publish w and some vhen discre	2020 1.16 1.17 1.18 1.20 1.22 e models pr esday, Octol hed since 19 e too high, t	2025 1.24 1.27 1.31 1.35 1.39 ojected glo ber 31, 202 073 have g they all sho	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50 1.57 obal warm 17 enerally be ow outcom	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74 ing?	2040 1.50 1.57 1.68 1.80 1.92	2045 1.58 1.67 1.81 1.95 2.09	2050 1.67 1.77 1.93 2.10 2.27 ure warmir actually oc	ng. While some
, ,	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h By Zeke Hau Climate mo were too lo	2017 2017 1.10 1.10 1.10 1.10 1.10 ave climate usfatherTue dels publish w and some vhen discre	2020 1.16 1.17 1.18 1.20 1.22 e models pr esday, Octol hed since 19 e too high, t	2025 1.24 1.27 1.31 1.35 1.39 ojected glo ber 31, 202 073 have g they all sho	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50 1.57 obal warm 17 enerally be ow outcom	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74 ing?	2040 1.50 1.57 1.68 1.80 1.92	2045 1.58 1.67 1.81 1.95 2.09	2050 1.67 1.77 1.93 2.10 2.27 ure warmir actually oc	ng. While some curred,
7	https://ww Temp Incr per Decade 0.17 0.20 0.25 0.30 0.35 How well h By Zeke Han Climate mo were too lo especially w taken into a	2017 1.10 1.10 1.10 1.10 1.10 1.10 ave climate usfatherTue dels publish w and some vhen discre account.	2020 1.16 1.17 1.18 1.20 1.22 e models pr esday, Octol hed since 19 e too high, t pancies bet	2025 1.24 1.27 1.31 1.35 1.39 ojected glu ber 31, 202 073 have g they all sho ween prec	<u>-05/1-5c-o</u> Ye 2030 1.33 1.37 1.43 1.50 1.57 obal warm 17 enerally be ow outcom licted and a	f-warming- ar 2035 1.41 1.47 1.56 1.65 1.74 ing? een quite sk aes reasona actual CO2	2040 1.50 1.57 1.68 1.80 1.92 killful in pro bly close to concentrat	2045 1.58 1.67 1.81 1.95 2.09 Djecting fut o what has tions and o	2050 1.67 1.77 1.93 2.10 2.27 ure warmir actually oc ther climat	ng. While some curred,

ng/
stem ved
trend
large se of s as
limate not
e
us
:h
yr yr i 2 s

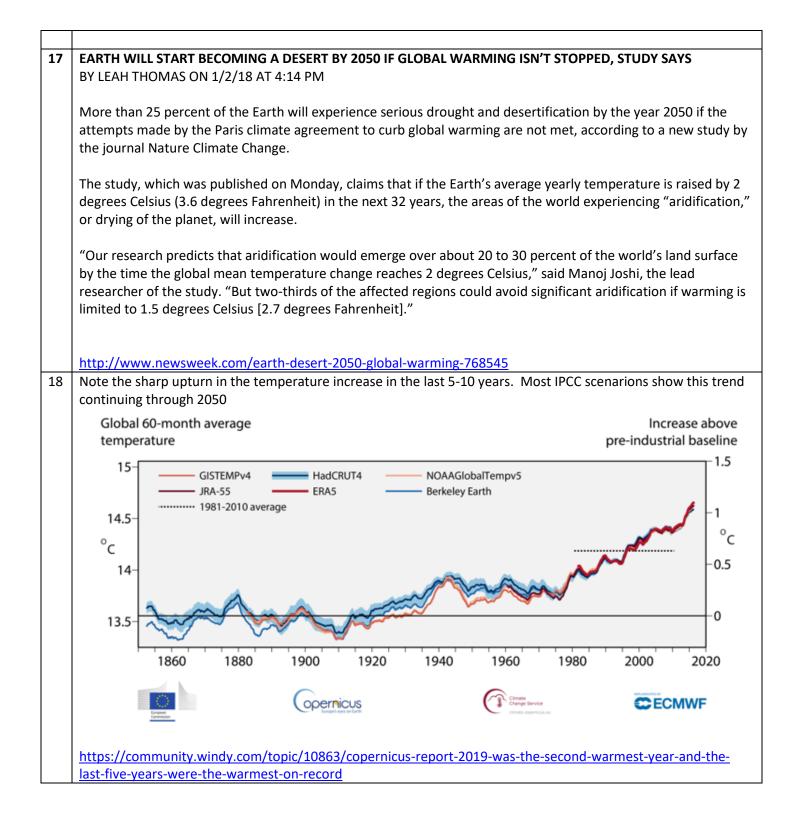
Global Temperatures. What thermometers do & *don't yet* show!

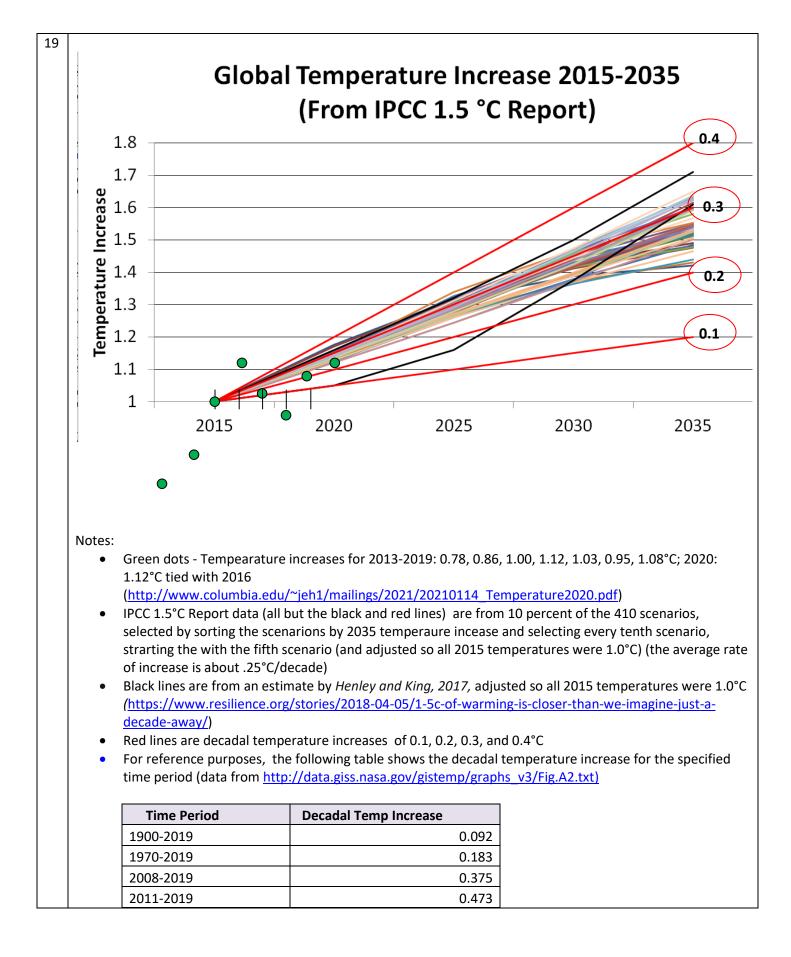
Clobal average temperature based on (1) actual observations (NASA GISS, light blue=monthly average, dark blue = year, red = 30 year), (2) climate sensitivity estimate (brown), (3) ocean thermal climate inertia estimate (orange), (4) Earth system sensitivity estimate (grey). The last three values are values for the extent of inevitable warming ('Real Global Temperature) due to inert climate processes if CO2 is stabilized at the level of that year.

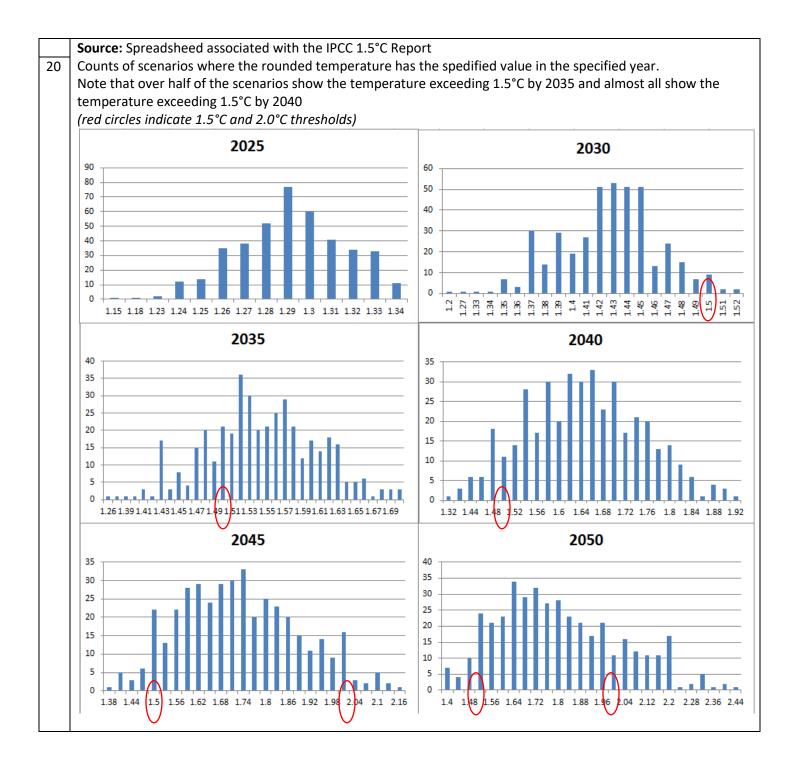
12 Given the following:

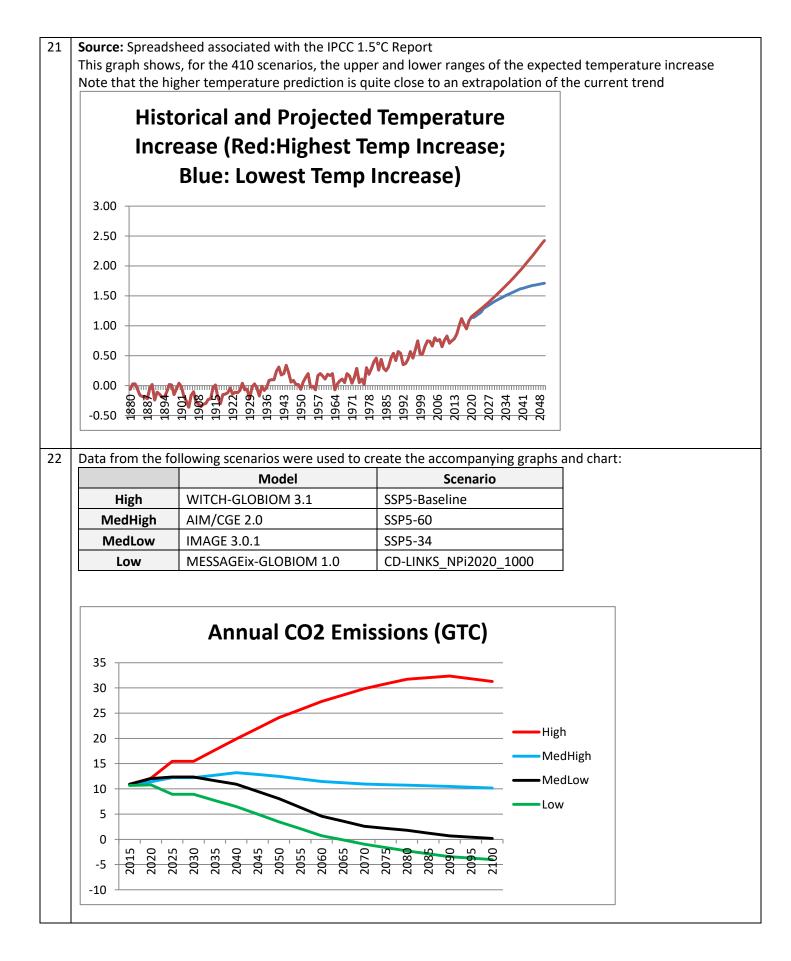
9.86	2015 Fossil Fuel Emissions (GTC)
1.6	2015 land use emissions (GTC)
2070	Year when land use emissions reach zero
0.029	Land use decline/year (GTC)
1%	Annual increase in FF emissions to 2025
1%	Annual decrease in FF emissions after 2025
718	GTC of fossil fuel and land use emissions (calculated)
0.8	Radiative Forcing in 2100 from other than CO2 (W/m-2)
	Ocean and biosphere uptake similar to MAGICC and CROADS
3.4	Climate sensitivity to account for natural feedbacks

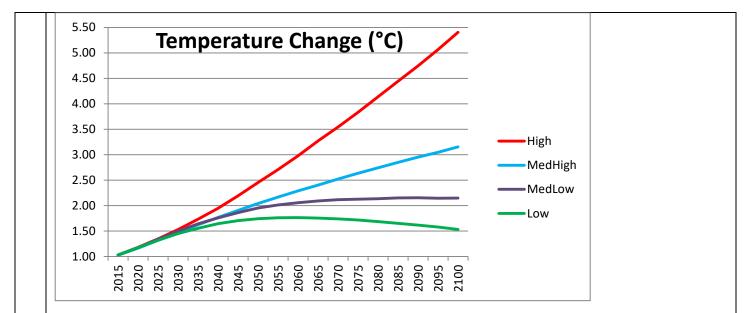
Then we should expect an equilibrium temperature of about 4.6° C in 2100 (Note that the same result is obtained with a climate sensitivity of 3.0 and natural feedbacks of 100 GTC)

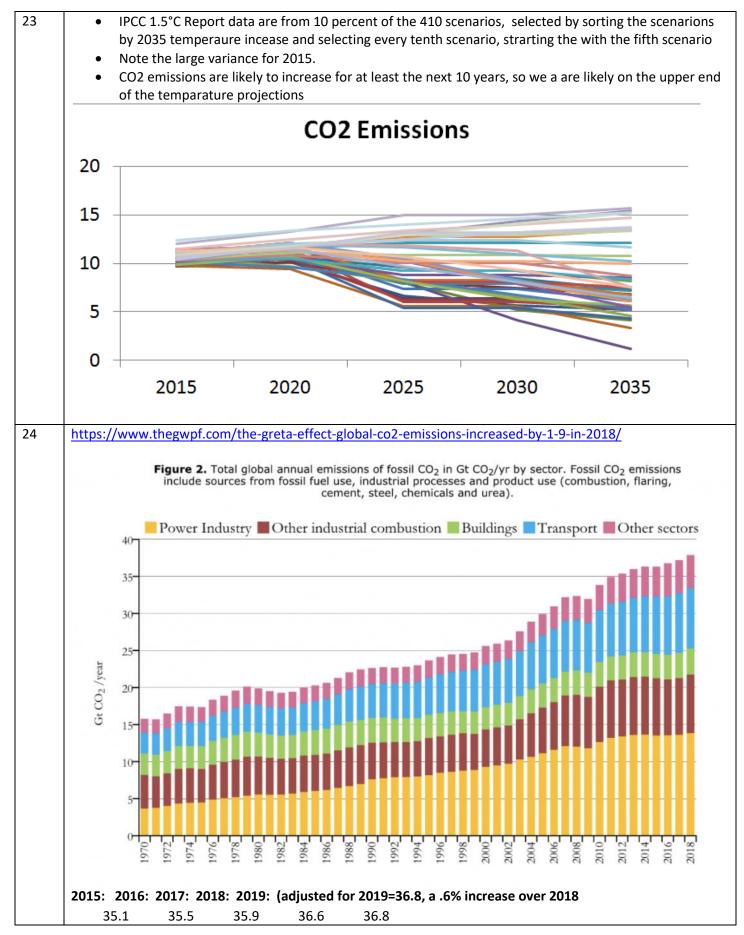

		Clima	ate Se	nsititi	ivity	3.4											
	CO2 Emissions																
		100	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
	0.0	1.11	1.43	1.58	1.74	1.90	2.06	2.22	2.37	2.53	2.69	2.85	3.01	3.16	3.32	3.48	3.64
	0.1	1.19	1.52	1.68	1.84	2.00	2.16	2.32	2.48	2.64	2.81	2.97	3.13	3.29	3.45	3.61	3.77
	0.2	1.28	1.61	1.77	1.94	2.10	2.27	2.43	2.59	2.76	2.92	3.09	3.25	3.42	3.58	3.74	3.91
	0.3	1.37	1.70	1.87	2.04	2.21	2.37	2.54	2.71	2.87	3.04	3.21	3.38	3.54	3.71	3.88	4.05
	0.4	1.46	1.80	1.97	2.14	2.31	2.48	2.65	2.82	2.99	3.16	3.33	3.50	3.67	3.84	4.02	4.19
	0.5	1.55	1.90	2.07	2.25	2.42	2.59	2.77	2.94	3.11	3.29	3.46	3.63	3.81	3.98	4.16	4.33
Non-CO2	0.6	1.64	2.00	2.18	2.35	2.53	2.71	2.88	3.06	3.24	3.41	3.59	3.77	3.94	4.12	4.30	4.47
RF	0.7	1.74	2.10	2.28	2.46	2.64	2.82	3.00	3.18	3.36	3.54	3.72	3.90	4.08	4.26	4.44	4.62
nr	0.8	1.84	2.20	2.39	2.57	2.75	2.94	3.12	3.31	3.49	3.67	3.86	4.04	4.22	4.41	4.59	4.77
	0.9	1.94	2.31	2.50	2.68	2.87	3.06	3.25	3.43	3.62	3.81	3.99	4.18	4.37	4.55	4.74	4.93
	1.0	2.04	2.42	2.61	2.80	2.99	3.18	3.37	3.56	3.75	3.94	4.13	4.32	4.51	4.70	4.90	5.09
	1.1	2.14	2.53	2.72	2.92	3.11	3.30	3.50	3.69	3.89	4.08	4.28	4.47	4.66	4.86	5.05	5.25
	1.2	2.24	2.64	2.84	3.03	3.23	3.43	3.63	3.83	4.02	4.22	4.42	4.62	4.82	5.01	5.21	5.41
	1.3	2.35	2.75	2.95	3.16	3.36	3.56	3.76	3.96	4.16	4.37	4.57	4.77	4.97	5.17	5.37	5.58
	1.4	2.46	2.87	3.07	3.28	3.49	3.69	3.90	4.10	4.31	4.51	4.72	4.92	5.13	5.33	5.54	5.74
							E	quilib	rium 1	Гетр	eratur	e					

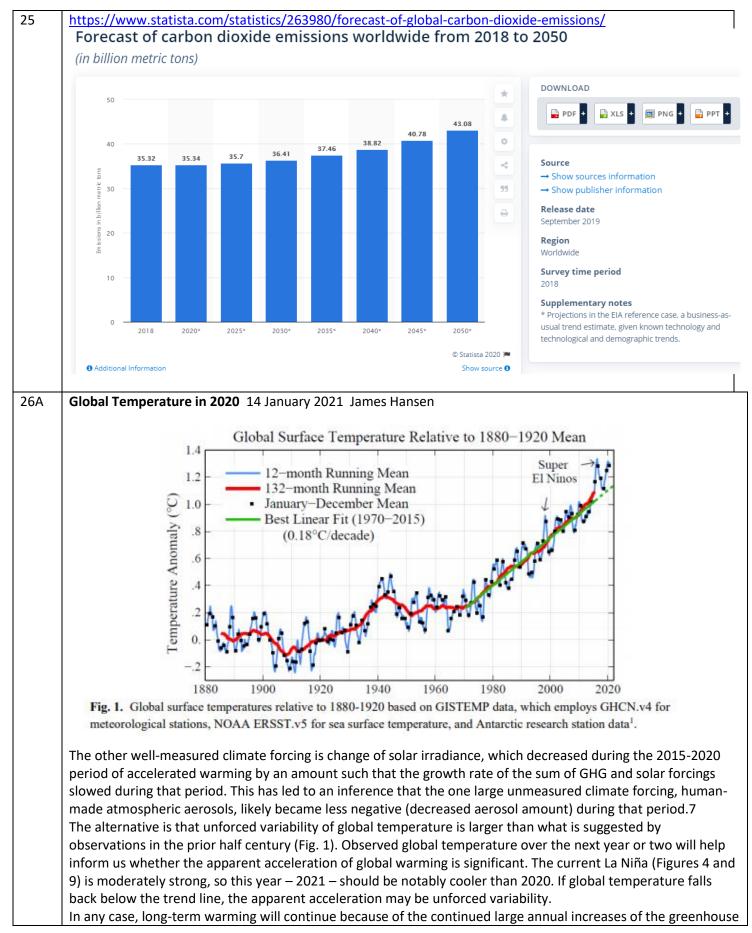

Note that for CS=3, NonCO2RF=0.8, CO2 emissions of 525 GTC result in an equilibrium temperature of about 3°C and for CS=3.4, NonCO2RF=0.8, CO2 emissions of 420 GTC result in an equilibrium temperature of about 3°C. Since natural emissions are apt to be at least 100 GTC¹ (for a temperature increase less than 2°C), it seems logical to assume that a climate sensitivity of 3 where natural emissions are included is equivalent to a climate sensitivity of 3.5 where natural emissions are not included (and the "equivalence" is apt to be wider for higher temperatures)


http://ccdatacenter.org/documents/CO2EmissionsBudgets.pdf


13	 Committed Global Temperature Increases (likely an exaggeration - included because it has some interesting points) Today's full committed globalwarming due to climate science is 2.4°C (Ramanathan, Feng Avoiding Dangerous Climate interference PNAS 2008) and warming will continue for over 1000 years •0.8°C today's surface temperature increase •0.7°C 'hidden' deferred warming from the ocean heat lag. The ocean heat lag commits any temperature increase before 2100 to almost 	te to Full bfor Up too and Fol for Pol for Pol for To To n	Eventual full equilibrium 10.5° temperature increase on today's emissions scenario (A1F1) 10 Full equilibrium temperature increase 8.5° by the combined national proposals formally submitted to the United Nations 9 Full equilibrium temperature increase 8.5° by the combined national proposals formally submitted to the United Nations 9 Upper probability risk by 2100 from 7.0° today's global emissions scenario and from policy commitment 7 Today's emissions scenario by 2100 5.5° 6 Today's emissions scenario (A1F1) 6 Policy commitment from combined 4.5° 5 Policy commitment from combined 4.5° 4 Plus emissions reduction to atmospheric GHG stabilization time 50 yrs =1°C >3.0° 3 Possible increase by 2050 Climate Prediction net, upper range Met Office 3.0° Total climate science commitment 2.4° including aerosol cooling factor 2	
	 double after 2100 at temperature equilibrium. 0.9°C 'hidden' deferred warming due to aerosol cooling that will be 'unmasked' when fossil air pollution or fossil energy production stops Plus another 1.0°C which is the fastest time from emergency emissions reduction to atmospheric CUC stabilization 	aln	Climate system inertia (ocean heat lag) 1.5° almost doubles temp increase Today 0.8° Global temperature increase from preindustrial °C The ocean heat lag almost doubles a temperature increase before 2100 after 2100 (equilibrium)	
	atmospheric GHG stabilization. https://www.climateemergencyinstitute.com/com	mitte	ted global warming basic science.html	
14	CMIP5 models, RCP scenarios		Radiative Temperature Increase (°C)	
	-		Forcing 50% 66% 83%	
	5 – — Historical (42) – RCP 2.6 (26) – RCP 4.5 (32)		2.6 1.55 1.84 2.14	
			4.5 2.29 2.60 2.90	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6.0 2.64 3.09 3.53	
	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		8.5 4.18 4.62 5.06 Implied Climate Sensitivity* (For an Equilibrium Temp) Forcing 50% 66% 83% 2.6 2.21 2.63 3.05 4.5 1.88 2.13 2.38 6.0 1.63 1.90 2.18 8.5 1.82 2.01 2.20 * climate sensitivity = 3.7 * Temp Increase /Radiative Forcing (Note: 66% column is average of 50% and 83% columns)	


15	Ecosystems across Australia are collapsing under climate change 23/07/2018 The Great Barrier Reef has become a notorious victim of climate change. But it is not the only Australian ecosystem on the brink of collapse	
	Our research, recently published in Nature Climate Change, describes a series of sudden and catastrophic ecosystem shifts that have occurred recently across Australia.	
	These changes, caused by the combined stress of gradual climate change and extreme weather events, are overwhelming ecosystems' natural resilience.	
	We identified ecosystems across Australia that have recently experienced catastrophic changes, including:	
	 kelp forests shifting to seaweed turfs following a single marine heatwave in 2011; the destruction of Gondwanan refugia by wildfire ignited by lightning storms in 2016; dieback of floodplain forests along the Murray River following the millennial drought in 2001–2009; large-scale conversion of alpine forest to shrubland due to repeated fires from 2003–2014; community-level boom and bust in the arid zone following extreme rainfall in 2011–2012, and mangrove dieback across a 1,000km stretch of the Gulf of Carpentaria after a weak monsoon in 2015-2016. Of these six case studies, only the Murray River forest had previously experienced substantial human disturbance. The others have had negligible exposure to stressors, highlighting that undisturbed systems are not 	
	necessarily more resilient to climate change.	
16	http://www.climatechangenews.com/2018/07/23/ecosystems-across-australia-collapsing-climate-change/ Saving Earth: Don't Fall Into Climate Change Fatalism Peter H. Gleick 08/01/2018	-
	It's too late to stop severe climate change – indeed we see it around us. But it is absolutely not too late to slow the rate of climate change, to accelerate the transition away from coal, and then oil, and then natural gas to the diverse and increasingly inexpensive and effective suite of renewable energy options available to us. We can, and must, still act.	
	As the Times piece notes, we've lost the opportunity to prevent one degree Celsius of warming and without prompt and dramatic efforts almost certainly cannot prevent two degrees of warming. That's bad enough: It's probably sufficient to destroy the Arctic ice cap, most shallow tropical reefs, much of the snowpack in the world's mountain ranges and lead to more extreme floods and droughts. But continued inaction will lead to much worse. Three or four degrees warming – which by the way was enough to mark the difference between planetary ice ages and warm interglacial periods – would wipe out all major coastal cities that can't spend the literally hundreds of billions of dollars or more needed to build massive seawalls, destroy dozens of low-lying island nations, and make vast areas near the equator brutally – and perhaps unbearably – hot. Five degrees is simply unthinkable.	
	The good news is that these doomsday scenarios are not inevitable. Progress is being made almost everywhere, except at the national level of the U.S. Other nations, many U.S. states, local governments, responsible companies and individuals are moving forward. Emissions have flattened over the last several years and are starting to come down in many places. The delays of the past 40 years have committed the planet to unprecedented changes and will impose severe costs on all of us, especially on the poorest populations without the resources to adapt. But even more extreme costs can still be prevented if our politicians and the public can put aside blind ideology, anti-science rhetoric and short-term thinking for the sake of our children and the planet.	
	https://www.huffingtonpost.com/entry/opinion-gleick-new-york-times-climate- change_us_5b61fafbe4b0b15aba9f3959	
		1





	2100 0	2100 Cumulative and Annual Values						
	High	MedHigh	MedLow	Low	Average			
Temperature Increase	5.40	3.15	2.15	1.53	1.1			
CO2 Atmos Conc 2100	1070	660	507	413	418			
CO2e Atmo Conc 2100	1489	775	550	440	47:			
Emissions (GTC and MT)								
CO2 (Annual)	31.3	10.2	0.2	-4.0	11.0			
CO2 (Cumulative 2015-2100)	2111	991	535	216				
CH4 (Annual)	787	326	167	115	386.8			
N20 (Annual)	15.9	12.5	9.0	6.4	10.			
N2O (Cumulative 2015-2100)	1236	966	818	724				
Radiative Forcing in 2100 (W/m2)								
CO2	7.24	4.63	3.22	2.13	2.2			
CH4 (Methane)	0.90	0.44	0.27	0.21	0.54			
N2O	0.43	0.36	0.31	0.28	0.2			
Aerosol	-0.54	-0.37	-0.33	-0.35	-0.93			
Other GHGs	0.97	0.45	0.20	0.22	0.80			
Total RF	9.00	5.50	3.67	2.48	2.84			

	gas climate forcing (Fig. 8). The greenhouse warming will be abetted by solar irradiance; solar minimum was
	reached in 2019, so irradiance should be increasing for the next several years.
	http://www.columbia.edu/~jeh1/mailings/2021/20210114_Temperature2020.pdf
26B	Global Surface Temperature
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Month http://www.columbia.edu/~mhs119/Temperature/2015-2020line.png
27	Earth to reach temperature tipping point in next 20 to 30 years, new study finds Jan 2021 https://phys.org/news/2021-01-earth-temperature-years.html
28	Land Absorbs Carbon Now—But It Could Emit It in Just a Few Decades <u>https://earther.gizmodo.com/land-absorbs-carbon-now-but-it-could-emit-it-in-just-a-1846053001</u>
29	Climate change: Threshold for dangerous warming will likely be crossed between 2027-2042 Scientists introduce a new way to predict global warming, reducing uncertainties considerably December 21, 2020
30	https://www.sciencedaily.com/releases/2020/12/201221160425.htm Analysis: When might the world exceed 1.5C and 2C of global warming? https://www.carbonbrief.org/analysis-when-might-the-world-exceed-1-5c-and-2c-of-global-warming
31	Study: Warming already baked in will blow past climate goals A new study says the amount of global warming already baked into the air because of past carbon pollution is enough to blow past internationally agreed upon climate limits By SETH BORENSTEIN AP Science Writer January 4, 2021, 8:19 PM https://abcnews.go.com/Technology/wireStory/study-warming-baked-blow-past-climate-goals-75044132
32	Global Warming Acceleration 14 December 2020 James Hansen and Makiko Sato Abstract. Record global temperature in 2020, despite a strong La Niña in recent months, reaffirms a global warming acceleration that is too large to be unforced noise – it implies an increased growth rate of the total global climate forcing and Earth's energy imbalance. Growth of measured forcings (greenhouse gases plus solar irradiance) decreased during the period of increased warming, implying that atmospheric aerosols probably decreased in the past decade. There is a need for accurate aerosol measurements and improved monitoring of Earth's energy imbalance.
	How large is the aerosol forcing? In recent IPCC reports the GCMs (global climate models) tended to use aerosol forcings in the range -0.5 W/m ² to -1.0 W/m ² , despite the fact that the IPCC radiative forcing chapters suggest a larger (more negative) aerosol forcing, with a direct aerosol forcing ~ -0.5 W/m ² and an indirect aerosol forcing (via cloud effects) ~ -1 W/m ² , with large uncertainty bars. Consistent with the

	radiative forcing chapters, we (Hansen et al, 2011) made a strong case that the actual aerosol forcing is - $1.6 \pm 0.3 \text{ W/m}^2$. We also infer why most GCMs (including the GISS model) "need" a smaller aerosol effect – if they want to match observed global warming in the past century. The reason is that the models mix heat too efficiently into the ocean – so to match observed warming the models need a larger net forcing, which they achieve by omitting some of the negative aerosol forcing.
	Is this important? Yes. It means that the little blip of extra warming that we got in the past five years is only a down payment on the penalty that young people will pay for our Faustian bargain. Mephistopheles is coming, but it is our grandchildren that he will be dragging off <u>https://mailchi.mp/caa/global-warming-acceleration</u>
33	Dr. James E Hansen - Nitrogen and Aerosol Masking Dec 15, 2020 (7 minutes) <u>https://www.youtube.com/watch?v=uii6sBAUrc0&list=PLe6EP38qqR0b8qlzgC1LDdmcg0lqUJMrM&index=33</u>