Background

The recently signed COP 21 Paris Agreement calls for all nations to curb their CO2 emissions with the goal of keeping the global temperature rise this century to well below 2°C above pre-industrial levels (and striving to limit the increase to 1.5°C). The agreement assumes that the temperature will stabilize after the target is met. Unfortunately the planning does not appear to have taken into account the additional warming from natural causes (feedbacks) stemming from a warming planet. These include decreased albedo from the melting of summer-time ice in the Arctic Ocean, the reduced snow cover in the Northern Hemisphere, etc., and increased greenhouse gas emissions (primarily CO2 and methane) from peat bogs, thawing permafrost, etc.¹.

Radiative Forcing Computations

By estimating what the effective radiative forcings (ERF) of the major components of the climate system will be in 2100 it is possible to also estimate the resulting temperature increase based on an expected value for climate sensitivity. One can then determine if it is possible to meet the temperature goal of the Paris agreement through an aggressive emissions reduction effort with net-zero greenhouse gas emissions by 2060:

	ERF (\	N/m-2)	
#	2060	2100	Radiative Forcing Components
	Anthr	opogenic	changes from 1870 - 2011
1	2.29	2.29	ERF in 2011 (IPCC) ²
	Anthr	opogenic	changes from 2012 to 2100
2	0.41	0.65	Due to the reduction of aerosols and precursors (IPCC AR5: total of -0.82 in 2011, mostly due to the burning of fossil fuels; for 2060, 50% of the value is used; for 2100, 80% of the value is used) ²
3	0.80	0.80	Due to 1240 GTCO2 of CO2 emissions from an aggressive emission reduction scenario (emissions peak in 2025 and go to zero in 2055, resulting in increasing atmospheric CO2 by about 72 PPM)
4	-	-0.37	Due to the reduction of atmospheric concentrations of CH4, N2O, and halocarbons
	0.19		(IPCC RCP 2.6: -0.37 in 2100; for 2060, $\frac{1}{2}$ the estimated value is used) ³
5	??	??	Other – land use changes, atmospheric changes, etc.
	Additi	ons from	natural feedbacks ⁴ (represents the equivalent of about 1,700 GTCO2 in 2100)
6	0.14	0.25	Arctic Ocean - linear change in Arctic Ocean sea ice extent
7	0.12	0.18	Retreating snowline - linear change in Northern Hemisphere snow cover extent
8	0.06	0.32	Permafrost thawing (for 2060, 20% of the 120 GTC expected by 2100 (88 GTCO2, or 5 PPM CO2); for 2100, 440 GTCO2 or 25.5 PPM CO2)
9	0.14	0.27	Peatlands and Peat Bogs (4 GTCO2 per year: for 2060, for 50 years – 200 GTCO2, or 11 PPM; for 2100, 90 years – 360 GTCO2 or 21 PPM)
10	??	??	Other – methyl hydrates, forests, soils, etc.
	Total	Changes	in ERF
	3.81	4.43	Total Change in ERF from preindustrial times
	Estima	ated tem	perature increase for an energy imbalance of 0.7 w/m-2 and a climate sensitivity = 3.0 $^{\circ}C^{5}$
	2.4°	3.0°C	Expected temperature increase ⁶
	C		
		ated equi	ilibrium temperature change for a climate sensitivity of 3.0 °C ⁵ for a doubling of CO2 PPM
	3.1°	3.9°C	Equilibrium temperature increase ⁶
	C		

Table 1. Radiative forcing of the major components of the climate system for 2060 and 2100

If the climate sensitivity is 3⁵, the ERF for 2100 needs to be about 2.7 W/m-2 in order to limit the temperature increase to 2°C. The above analysis shows that the goals of the COP 21 Paris Agreement can only be met by capturing and sequestering enough CO2 to reduce the projected ERF in 2100 by about 1.7 W/m-2. This would require reducing the atmospheric CO2 concentration by about 180 PPM, or 3,100 GTCO2.

Expected Costs

Since the additions from the natural feedbacks are so large (being responsible for almost one-fourth of the total temperature increase in 2100), the Earth's atmosphere will continue to warm long after anthropogenic greenhouse gas emissions are reduced to zero. Unless these natural feedbacks can either be reduced to zero or compensated for (by annually removing an equivalent amount or carbon dioxide from the atmosphere), eliminating all anthropogenic emissions will not be sufficient to meet the IPCC's goals. Our global warming goal should really be to keep the Earth's temperature low enough so that we can afford to offset (e.g., sequester) the equivalent emissions from the global warming feedbacks - otherwise the Earth will eventfully warm enough to cause catastrophic climate change.

To get a ballpark estimate of the economic challenge, cost estimates for three scenarios in which the net anthropogenic emissions match the IPCC budget can easily be made:

	(Emissions in GTCO2)	No sequestration of	Sequestration of equivalent	Remove enough CO2
		equivalent CO2 from	CO2 from feedbacks	(1,600 GTCO2) to
		feedbacks		eliminate feedbacks
1	Total Emissions over budget	2120	2120	2120
2	CO2 Sequestered	420 (to meet IPCC budget)	2120	2120+ 1600
3	CO2e not sequestered	1700 (from feedbacks)	0	0
4	Sequestration Costs (T\$)	21	200	370
5	2100 ERF from feedbacks -	1.28	0	-1.08 (=2.6-1.52)
	extra CO2 removed			
6	Total ERF (W/m-2)	3.88 (=2.6+1.28)	2.6	1.52 (ERF for 1°C)
7	Equilibrium Temperature (°C)	3.2	1.9	1.0

Table 2 – Equilibrium Temperature Increase for Various Amount of CO2 Sequestration

The above estimates are based on the following parameters and assumptions:

1	1240	
		were about 34 GTCO2; if they increase annually by 2% until 2025 and then decline by 1.5 GTCO2 annually,
		there will be net zero emissions after 2055 and the total emissions will be about 1240 GTCO2)
2	180	Emissions (GTCO2)after 2055 that will need to be sequestered if annual emissions are about 4 GTCO2 ⁶
3	1,000	The IPCC post-2011 CO2 budget(GTCO2) for a 66% chance of limiting the temperature increase to 2°C ⁷
4	1,700	GTCO2 equivalent emissions from global warming feedbacks for a temperature increase of 2°C ⁴
5	3	The climate sensitivity to CO2 from a doubling of atmospheric CO2 ⁸
6	50	Per-ton cost (\$) of capturing and sequestering CO2 for CCS (anthropogenic emissions only ⁹
7	100	Per-ton cost (\$) of capturing and sequestering CO2 for direct air capture (DAC) ⁹
8	2.6	Effective radiative forcing (W/m-2) for a 1.9°C temperature increase and a climate sensitivity of 3 ¹⁰
Tal		arometers for Ballaark Estimate of CO2 Sequestration Costs Based on Amount of CO2 Sequestared

Table 3 – Parameters for Ballpark Estimate of CO2 Sequestration Costs Based on Amount of CO2 Sequestered

If anthropogenic emissions are in line with the UNFCCC budget and if the UNFCCC budget would result in a 2°C temperature increase, we can expect a temperature increase over 3°C for a modest cost. If we also remove CO2 from the atmosphere that is equivalent to the global warming feedbacks we can limit the temperature to 2°C for a cost of about \$200 Trillion, but the planet will continue to warm unless we spend another \$1.5 Trillion per year to offset the feedbacks of roughly 15 GTCO2. Since global warming feedbacks are already significant¹⁰ with a temperature increase of only about 1.1°C, it would

seem that we'd be lucky to eliminate the feedbacks with a temperature increase of only 1°C, which would cost over \$370 Trillion.

The prevailing assumption is that we will be willing (and able) to spend whatever it costs to keep meet the temperature target because anything more than that will likely be disastrous for our civilization. Giving up on that goal is then equivalent to condemning future generations to a planet that is inhospitable to civilization as we know it, and this may be the reason that very few people openly acknowledge our predicament. But a closer look expected costs (likely around \$370 Trillion this century if we can significantly reduce the expected cost of carbon dioxide removal to \$100/ton of CO2 for direct air capture) shows that we have a very daunting (and almost certainly insurmountable) problem.

Conclusions

- We can already expect about a 2°C temperature increase based on the greenhouse gases currently in the atmosphere (assuming emissions from burning coal are eliminated)^{11,12}
- There will be significant future anthropogenic greenhouse gas emissions for any realistic mitigation scenario
- Global warming feedbacks are already significant¹⁰
- There will be both significant future natural greenhouse gas emissions and significant albedo changes from the feedbacks from a warming world⁴
- Widespread thawing of the permafrost could start when the global temperature increases by 1.5°C¹³
- If only a small fraction of Arctic carbon is released into the atmosphere the result could be catastrophic¹⁴
- The costs of removing CO2 from the atmosphere at the scale and speed required to limit the temperate increase in 2100 to 2°C are prohibitive (see above analysis)
- Most climate change damage will happen before the two-degree warming threshold¹⁵
- Once the temperature increase is over 3°C (and possibly over 1.5°C), the feedbacks from the global warming will likely drive the temperature increase to well over 4°C, resulting in a planet that is not hospitable to civilization as we know it
- Long-term sea level rise will exceed 40 feet¹⁶
- Ocean acidification will be catastrophic¹⁷

It is almost impossible to see how we can prevent very serious climate disruption. We should not give up hope on solving climate change as it is always possible that some technological "miracle" may be discovered. But the prudent thing to do is to assume that very serious climate disruption will occur well before 2100. We then have two main choices – we can either (1) use albedo modification to reduce the Earth's average temperature (in order to prevent the natural emissions and albedo changes from global warming feedbacks), or (2) start planning for catastrophic climate change. If we really want human civilization to survive for at least another thousand years then the sooner we can start having realistic conversations about our likely future the greater the chances of survival will be.

Fro	m a	ın April 2015	article in the Washingt	on Post:				
		it has not y	t proposed in 2005. And et made its way into ma in the <u>last IPCC report</u> low."	ajor climate	projections,	[Dr. Kevin] Sc	haefer says. "No	one of the cli
			nly not much of a stretc igatons per year from t		-		-	ades, we cou
			0, the "mean" estimate ys Schaefer.	e for total en	nissions fron	n permafrost r	ight now is 120 §	gigatons [44(
	_		ngtonpost.com/news/e ng-about-yet	nergy-envirc	onment/wp/	<u>2015/04/01/tl</u>	ne-arctic-climate	-threat-that
_		Emitted Compound	Resulting Atmospheric Drivers	Radiati	ive Forcing b	y Emissions ar	nd Drivers	Level of Confidence
		sa CO ₂	CO2				1.68 [1.33 to 2.03]	∨н
		CH4	CO ₂ H ₂ O ^{str} O ₃ CH ₄		-	↓	0.97 [0.74 to 1.20]	н
		CO2 CH4 Halo- carbons N2O	O ₃ CFCs HCFCs				0.18 [0.01 to 0.35]	н
		Mell-M	N ₂ O				0.17 [0.13 to 0.21]	∨н
	ogenic	CO	CO ₂ CH ₄ O ₃				0.23 [0.16 to 0.30]	м
	Anthropogenic	3ases and Aerosols ONMW *	CO ₂ CH ₄ O ₃	1 1 1 1 1 1	i+i		0.10 [0.05 to 0.15]	м
		0	Nitrate CH ₄ O ₃	-	•		-0.15 [-0.34 to 0.03]	м
		Aerosols and precursors (Mineral dust,	Mineral Dust Sulphate Nitrate Organic Carbon Black Carbon		-		-0.27 [-0.77 to 0.23]	н
		Organic Carbon and Black Carbon)	Cloud Adjustments due to Aerosols		+		-0.55 [-1.33 to -0.06]	L
			Albedo Change due to Land Use	· · ·	•		-0.15 [-0.25 to -0.05]	м
	Natural		Changes in Solar Irradiance		•		0.05 [0.00 to 0.10]	м
		Total An	thropogenic	201	1		2.29 [1.13 to 3.33]	н
			ive to 1750	198	0		1.25 [0.64 to 1.86]	н
				195			0.57 [0.29 to 0.85]	м
				–1 Radiativ	0 ve Forcing re	1 2 elative to 1750	3) (W m ^{_2})	

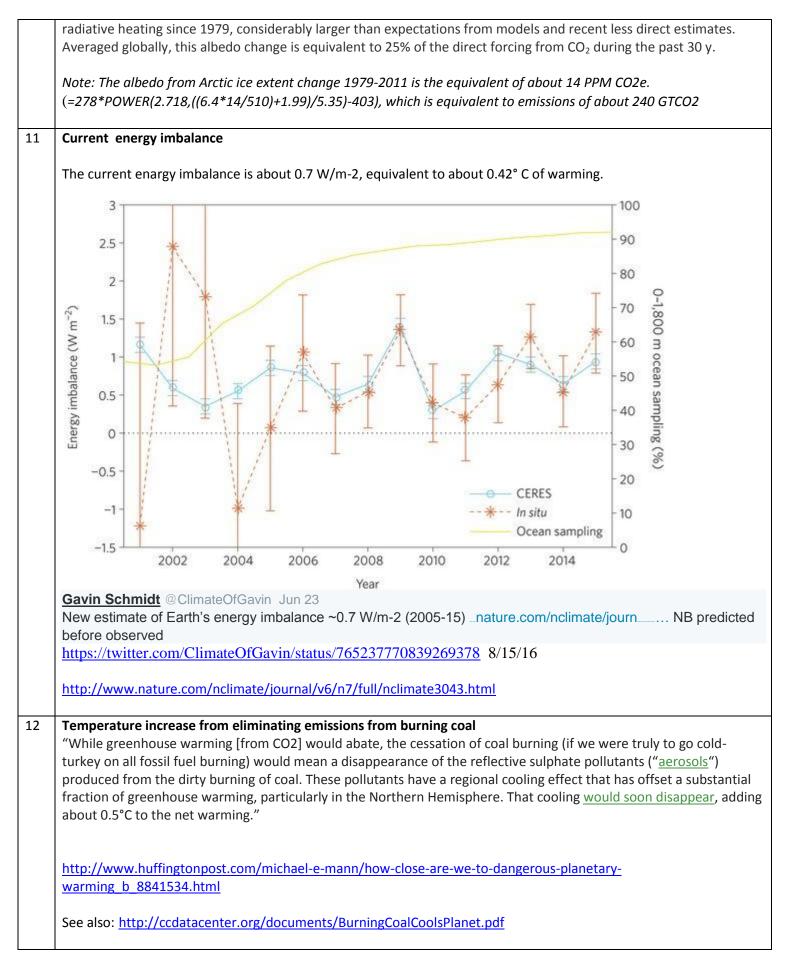
2B	Aerosol reduction from burn	ng coal wou	ld add about	0.5°C to the I	net warming – Huffington Post
	cold-turkey on all fos ("aerosols") produce	sil fuel burn d from the d action of gro r, adding ab	ing) would m lirty burning c eenhouse wa out 0.5°C to t	ean a disappe of coal. These rming, particu he net warm	
	<u>warming_b_8841534.ntmi</u>				
2	that the total radiative forcin thirds of that is due coal, the	gs due to ae n the aeroso ly be maskin	rosols and pr ls from coal r g 0.5°C. And	ecursors was educe the rad since the burn	the original source. However, the IPCC reported about -0.82 W/m-2 (see Figure above), so if two liative forcing by about 0.55 W/m-2; so the ning of other fossil fuels and biomass also g" is probably reasonable.
3		FRE	Change Since	1750	1
		2011	RCP2.6	Difference	
	CO2	1.816	2.220	0.404	
	CH4	0.425	0.270	-0.155	
	N20	0.195	0.230	0.035	
	Halocarbons	0.395	0.142	-0.253	
	CH4, N20, Halocarbons	1.015	0.642	-0.373	
	Greenhouse Gases	2.831	2.862	0.031	
4	IPCCPhysicalBasisAR5.pdf Feedbacks				
	The significance of the magnimost likely because (1) mode analyses of the feedbacks loc individually. By doing some so ice and Northern Hemisphere their magnitudes through 21 1. The warming potenti fuel emissions 2. By 2100 this will resu emissions since pre-i	ling the exp ok only at wh imple analy e snow cove 00, a startlin al in 2100 fr It in a warm ndustrial tim	ected magnit nat has happe ses of four of r; and greenh g picture emo om the four f ing potential nes, and capa	udes through med so far; ar the primary f ouse gas emi erges: eedbacks are (110 PPM CO ble of adding	global warming is not widely appreciated. This is the end of the century is very difficult; (2) most and (3) the feedbacks are usually looked at feedbacks (albedo changes from melting Arctic sea ssions from permafrost and peat) and estimating roughly equivalent to about ½ of current fossil 22e), about equivalent to that of all fossil fuel about 0.9° C to the Earth's average temperature. a 2100 is about twice the UNFCCC's carbon
	The results of the simple ana data from the National Snow University (Northern Hemisp estimate for total emissions f	and Ice Dat here snow c rom permaf	a Center (Arc over extent). Trost (120 GTC	tic sea Ice ext The estimate C) reported by	e analysis for the albedo changes are based on rent) and from the "Snow Lab" at Rutgers for the permafrost is based on the "mean" y Kevin Schaefer of the National Snow and Ice Data e emissions will remain at the current rate (4

	Feedback					LIK	kely Char	nge 2011	- 2100		
	Albedo	Changes	Rad	l. Forcing (W	//m- Atn	nos. CO2e			Total Equiv.	missions	Temp Increase
				2)							
	Arctic Ocean				.34			26.1		452	0.20
	Retreating s				.31			24		409	0.18
	Permafrost	5115			.33			25.5		440	0.19
		nd Peat Bogs			.30			23.0		400	0.12
	Total			·	1.28			98.6		1701	0.81
	# Temperate	ure increase	are not			temperate	ure incre		sed on the tot		
	http://ccdat	acenter.or	<mark>/docum</mark>	ents/Globa	lWarming	gFeedbacl	<u>ks.pdf</u>				
5	Climate sen	sitivity									
	http://www	.realclimate	e.org/ind	ex.php/arc	hives/200	0 <mark>7/08/</mark> the	-co2-pr	<u>roblem-i</u>	<u>n-6-easy-step</u>	os/	
	http://www										
	http://www	.bitsofscien	<u>ce.org/r</u>	<u>eal-global-t</u>	<u>emperati</u>	ure-trend	-climate	e-sensitiv	<u>vity-leading-c</u>	<u>limate-exp</u>	erts-7106
	Effective rac	diative forc	ng								
		C . 1						–			
		•		•		-					l emissions of
									es were obta		
	http://ccdat	acontor or	dooum	onts/Albod	oCO2Tem	nCalce ne					
	incip.//ceduc	acenterior	/uocum	ents/Albeu	00021011	ipcaics.pc	t, which	h used a	climate sens	sitivity of 3	.0:
			/uocum					h used a	climate sens	sitivity of 3	.0:
		Effective		Equiv		Effec	tive		Total	CO2 PPM	.0: Temp
	Yearly	Effective Radiative	Equiv.	Equiv CO2	Temp	Effec Radia	tive itive	Annual	Total Emissions	CO2 PPM (2015-	Temp Increase
	Yearly Albedo	Effective Radiative Forcing	Equiv. CO2e	Equiv CO2 Em.	Temp Increase	Effec Radia Forc	tive Itive ing Ei	Annual	Total Emissions 2015-	CO2 PPM (2015- 2100)	Temp Increase (2015-
	Yearly Albedo Decrease	Effective Radiative Forcing (W/m-2)	Equiv. CO2e PPM	Equiv CO2 Em. (GTCO2)	Temp Increase (°C)	Effec Radia Forc (W/n	tive Itive ing Ei n-2) (Annual missions (GTCO2)	Total Emissions 2015- 2100	CO2 PPM (2015- 2100) (GTCO2)	Temp Increase (2015- 2100) (°C)
	Yearly Albedo Decrease 0.00300	Effective Radiative Forcing (W/m-2)	Equiv. CO2e PPM 23.70	Equiv CO2 Em. (GTCO2) 411	Temp Increase (°C) 0.18	Effec Radia Forc (W/n 0	tive itive ing Ein-2) (.254	Annual missions (GTCO2) 4	Total Emissions 2015- 2100 340	CO2 PPM (2015- 2100) (GTCO2) 19.60	Temp Increase (2015- 2100) (°C) 0.15
	Yearly Albedo Decrease 0.00300 0.00320	Effective Radiative Forcing (W/m-2) 0.306	Equiv. CO2e PPM 23.70 25.33	Equiv CO2 Em. (GTCO2) 411 439	Temp Increase (°C) 0.18 0.19	Effec Radia Forc (W/n 0 0	tive Itive ing Ei n-2) (Annual missions (GTCO2)	Total Emissions 2015- 2100 340	CO2 PPM (2015- 2100) (GTCO2)	Temp Increase (2015- 2100) (°C) 0.15
	Yearly Albedo Decrease 0.00300	Effective Radiative Forcing (W/m-2)	Equiv. CO2e PPM 23.70	Equiv CO2 Em. (GTCO2) 411	Temp Increase (°C) 0.18	Effec Radia Forc (W/n 0 0	tive itive ing Ein-2) (.254	Annual missions (GTCO2) 4	Total Emissions 2015- 2100 340 425	CO2 PPM (2015- 2100) (GTCO2) 19.60	Temp Increase (2015- 2100) (°C) 0.15 0.18
	Yearly Albedo Decrease 0.00300 0.00320	Effective Radiative Forcing (W/m-2) 0.306	Equiv. CO2e PPM 23.70 25.33	Equiv CO2 Em. (GTCO2) 411 439	Temp Increase (°C) 0.18 0.19	Effec Radia Forc (W/n 0 0 0	tive htive ing Ei n-2) (.254 .316	Annual missions (GTCO2) 4 5	Total Emissions 2015- 2100 340 425 510	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22
	Yearly Albedo Decrease 0.00300 0.00320 0.00340	Effective Radiative Forcing (W/m-2) 0.306 0.326	Equiv. CO2e PPM 23.70 25.33 26.97	Equiv Equiv CO2 Em. (GTCO2) Image: Colored state sta	Temp Increase (°C) 0.18 0.19 0.20	Effec Radia Forc (W/n 0 0 0 0 0	tive htive ing En n-2) (.254 .316 .377	Annual missions (GTCO2) 4 5 6	Total Emissions 2015- 2100 340 425 510 595	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26	Equiv P CO2 P Em. P (GTCO2) P 411 P 439 P 468 P 496 P 525 P	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23	Effec Radia Forc (W/n 0 0 0 0 0 0	tive ing Ei n-2) (.254 . .316 . .377 . .437 .	Annual missions (GTCO2) 4 5 6 7 8	Total Emissions 2015- 2100 340 425 510 595	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26	Equiv P CO2 P Em. P (GTCO2) P 411 P 439 P 468 P 496 P 525 P	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23	Effec Radia Forc (W/n 0 0 0 0 0 0	tive ing Ei n-2) (.254 . .316 . .377 . .437 .	Annual missions (GTCO2) 4 5 6 7 8	Total Emissions 2015- 2100 340 425 510 595 680	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia	Effec Radia Forc (W/n 0 0 0 0 0 0 ative forc	tive ining Ei n-2) (.254 .316 .377 .437 .437 .497 ing and	Annual missions (GTCO2) 4 5 6 7 8 1 for ann	Total Emissions 2015- 2100 340 425 510 595 680 ual emission	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia	Effec Radia Forc (W/n 0 0 0 0 0 ative forc	tive ining Ei n-2) (.254 .316 .377 .437 .437 .497 ing and	Annual missions (GTCO2) 4 5 6 7 8 1 for ann	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S	Effec Radia Forc (W/n 0 0 0 0 0 0 0 ative forc Since Prei	tive ining Ei n-2) (.254 .316 .377 .437 .437 .497 ining and industri	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 emperature e Since Pre	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S Effective Radiative	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ining Ei n-2) (.254 .316 .377 .437 .437 .437 .497 ining and industri	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv.	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature E Since Pre Equive CO2e	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase ndustria	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S Effective Radiative Forcing	Effec Radia Forc (W/n 0 0 0 0 0 ative forc Since Prei	tive ining Ei n-2) (.254 .316 .377 .437	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv. CO2e	Temp Increase (2015- 2100) (°C) 0.15 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2)	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature Esince Prei	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 control for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S Effective Radiative Forcing (W/m-2)	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ing En n-2) (.254 .316 .377 .437 .437 .497 ing and industri Tem Increa (°C)	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial ial	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2)	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv. CO2e PPM	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2) 2.0	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature e Since Prei Equive CO2e PPM	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase ndustria	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S Effective Radiative Forcing (W/m-2) 3.0	Effec Radia Forc (W/n 0 0 0 0 0 0 ative forc Since Prei Equiv CO2e PPM 487	tive ntive / / ing Ei n-2) (.254 .316 .377 .43	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial ial ial 2.3	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2) 4.0	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv. CO2e PPM 587	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2)	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature e Since Prei Equive CO2e PPM	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase ndustria	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 control for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S Effective Radiative Forcing (W/m-2)	Effec Radia Forc (W/n 0 0 0 0 0 0 ative forc Since Prei Equiv CO2e PPM 487	tive ntive / / ing Ei n-2) (.254 .316 .377 .43	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial ial	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2)	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv. CO2e PPM	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2) 2.0	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature Esince Prei Equiv CO2e PPM 0 40	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase ndustria 1ncr 1ncr 2 2	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S Effective Radiative Forcing (W/m-2) 3.0	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ining En n-2) (.254 . .316 . .377 . .437 . .437 . .497 . ining and . industri Tem Increa (°C)	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial ial ial 2.3	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2) 4.0	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv. CO2e PPM 587	Temp Increase (2015- 2100) (°C) 0.15 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2) 2.0	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature e Since Prei Equive CO2e PPM 0 40 1 41	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase ndustria 100 100 100 100 100 100 100 100 100 10	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 for change to	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia change s Effective Radiative Forcing (W/m-2) 3.0 3.1	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ntive / / ing Ei n-2) (.254 .316 .377 .43	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial ial 2.3 2.4	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2) 4.0 4.1	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv. CO2e PPM 587 598	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2) 2.0 2.1 2.2	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature Esince Prei Equiv CO2e PPM 0 40 1 41 2 41	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase Increase Increase 9 2	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change te for change te for change (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia Change S Effective Radiative Forcing (W/m-2) 3.0 3.1 3.2	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ining En n-2) (.254 . .316 . .377 . .437 . .437 . .437 . .497 . .497 . .100 . .497 .	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial ial 2.3 2.4 2.5	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2) 4.0 4.1 4.2	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 Since Prein Equiv. CO2e PPM 587 598 609	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2) 2.0 2.1 2.2 2.3 2.4	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature E Since Prei Equiv. CO2e PPM 0 40 1 41 2 41 3 42 4	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase ndustria 1000 100	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change to change t	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia change s Effective Radiative Forcing (W/m-2) 3.0 3.1 3.2 3.3 3.4	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ntive / / ing Ei n-2) (.254 .316 .377 .437 .437 .437 ing and industri Increa (°C)	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial 2.3 2.4 2.5 2.6 2.7	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2) 4.0 4.1 4.2 4.3 4.4	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 5ince Prein Equiv. CO2e PPM 587 598 609 621 633	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29 dustrial Temp Increase (°C) 3.3 3.5 3.6 3.7 3.8
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2) 2.0 2.1 2.2 2.2 2.2	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature Esince Prei Equiv. CO2e PPM 0 40 1 41 2 41 3 42 4 43 5 44	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase Increase 10 10 10 10 10 10 10 10 10 10	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 for change for change c) 1.4 1.4 1.4 1.5 1.6 1.7 1.8	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia es in radia Change S Effective Radiative Forcing (W/m-2) 3.0 3.1 3.2 3.3 3.4 3.5	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ining En n-2) (.254 . .316 . .377 . .437 . .437 . .497 . ining and . industri Tem Increa (°C)	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial 2.3 2.4 2.5 2.6 2.7 2.8	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2) 4.0 4.1 4.2 4.3 4.4 4.5	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 5ince Prein Equiv. CO2e PPM 587 598 609 621 633 645	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29
	Yearly Albedo Decrease 0.00300 0.00320 0.00340 0.00360 0.00380 Expected Te Change Effective Radiative Forcing (W/m-2) 2.0 2.1 2.2 2.3 2.4	Effective Radiative Forcing (W/m-2) 0.306 0.326 0.347 0.367 0.388 mperature Esince Prei Equiv. CO2e PPM 0 40 1 41 2 41 3 42 4 43 5 44 5 44	Equiv. CO2e PPM 23.70 25.33 26.97 28.61 30.26 Increase ndustria 10 10 10 10 10 10 10 10 10 10	Equiv CO2 Em. (GTCO2) 411 439 468 496 525 e for change to change t	Temp Increase (°C) 0.18 0.19 0.20 0.21 0.23 es in radia change s Effective Radiative Forcing (W/m-2) 3.0 3.1 3.2 3.3 3.4	Effec Radia Forc (W/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tive ntive 2 ing Ei n-2) (.254 .316 .377 .437 .437 .437 ing and industri Increa (°C)	Annual missions (GTCO2) 4 5 6 7 8 1 for ann ial 2.3 2.4 2.5 2.6 2.7	Total Emissions 2015- 2100 340 425 510 595 680 ual emission Change S Effective Radiative Forcing (W/m-2) 4.0 4.1 4.2 4.3 4.4	CO2 PPM (2015- 2100) (GTCO2) 19.60 24.51 29.41 34.31 39.21 s of CO2 5ince Prein Equiv. CO2e PPM 587 598 609 621 633	Temp Increase (2015- 2100) (°C) 0.15 0.18 0.22 0.26 0.29 dustrial Temp Increase (°C) 1 3.3 3.5 3.6 3.7 3.8 4 4.0 4.1

	2.8	469	2.1	3.8	566	3.1		4.8	682	4.4									
	2.9	478	2.2	3.9	576	3.2		4.9	695	4.5									
Expect	ted Temperat	ure Increase	e for a char	nge in radi	ative forcir	ng													
Emissi	ions after 205	5																	
It is ve	ery unlikely that	nt total gree	nhouse gas	emissions	s can ever g	get to zero	. For exam	ole, see t	he IEA "Ei	nergy									
Techn	ology Perspec	tives 2012 2	°C Scenario	o" <i>,</i> which	estimates t	he over 7	GTCO2 will	need to l	be stored	annually ir									
2050 -	- <u>http://www.</u>	iea.org/pub	lications/fr	<u>eepublicat</u>	tions/public	cation/tec	hnology-roa	admap-ca	arbon-cap	<u>ture-and-</u>									
storag	e-2013.html																		
_																			
The IP	CC post-2011	CO2 hudge	ŀ																
	•	•																	
Table 2	2.2 Cumulative carbo	on dioxide (CO ₂) e	mission consister	it with limiting i	warming to less t	than stated tem	perature limits at	different level	ls of probability	r, based on diffe									
lines of	evidence. (WGI 12.5.4	4, WGIII 6)																	
			Cu	mulative CO ₂	emissions fro	om 1870 in G	tCO ₂			Cumulative CO ₂ emissions from 1870 in GtCO ₂									
	Net anthropogenic warming • <1.5°C																		
Net a	nthropogenic warmi	ng•	<1.5°C			<2°C			<3°C										
Fractio	on of simulations	ng • 66%	<1.5°C	33%	66%	<2°C 50%	33%	66%	<3°C	33%									
Fraction	on of simulations ng goal ^b	-		33%	66%		33%	66%	1	33%									
Fraction meetin Comp	on of simulations ng goal ^b lex models, RCP	-		33% 2550	66% 2900		33% 3300	66% 4200	1	4850									
Fraction meeting Comp scenar	on of simulations ng goal ^b lex models, RCP rios only ^c	66%	50%			50%			50%										
Fraction meetin Comp scenar Simple	on of simulations ng goal ^b Ilex models, RCP rios only ^c e model, WGIII	66%	2250 2300 to	2550 2400 to		50% 3000 2900 to	3300 2950 to		50% 4500 4150 to	4850									
Fraction meeting Comp scenar	on of simulations ng goal ^b Ilex models, RCP rios only ^c e model, WGIII	2250	2250	2550	2900	50% 3000	3300	4200	4500	4850									
Fraction meetin Comp scenar Simple	on of simulations ng goal ^b Ilex models, RCP rios only ^c e model, WGIII	2250	2250 2300 to 2350	2550 2400 to 2950	2900	50% 3000 2900 to 3200	3300 2950 to 3800	4200	50% 4500 4150 to	4850									
Fractic meetii Comp scenai Simple scenai	on of simulations ng goal ^b Ilex models, RCP rios only ^c e model, WGIII	2250	2250 2300 to 2350	2550 2400 to 2950	2900 2550 to 3150	50% 3000 2900 to 3200	3300 2950 to 3800	4200	50% 4500 4150 to	4850									
Fractie meetii Comp scenai Simple scenai	on of simulations ng goal ^b lex models, RCP rios only ^c e model, WGIII rios ^d	- 66% 2250 No data	50% 2250 2300 to 2350 Cu	2550 2400 to 2950 mulative CO ₂	2900 2550 to 3150 emissions fro	50% 3000 2900 to 3200 pm 2011 in G	2950 to 3800 tCO ₂	4200 n.a.¢	50% 4500 4150 to 5750	4850 5250 to 600									
Fractic meetii Comp scenai Simple scenai	on of simulations ng goal ^b dex models, RCP rios only ^c e model, WGIII rios ^d dex models, RCP	- 66% 2250 No data	50% 2250 2300 to 2350 Cu	2550 2400 to 2950 mulative CO ₂	2900 2550 to 3150 emissions fro	50% 3000 2900 to 3200 pm 2011 in G	2950 to 3800 tCO ₂	4200 n.a.¢	50% 4500 4150 to 5750	4850 5250 to 600 3250									
Fractic meetii Comp scenai Simple scenai	on of simulations ng goal ^b lex models, RCP rios only ^c e model, WGIII rios ^d lex models, RCP rios only ^c e model, WGIII	 66% 2250 No data 400 	50% 2250 2300 to 2350 Cu 550	2550 2400 to 2950 mulative CO ₂ 850	2900 2550 to 3150 emissions fro 1000	50% 3000 2900 to 3200 m 2011 in G 1300	3300 2950 to 3800 tCO ₂ 1500	4200 n.a.* 2400	50% 4500 4150 to 5750 2800	4850 5250 to 600									
Fractic meetii Comp scenai Simple scenai Simple scenai	on of simulations ng goal ^b lex models, RCP rios only ^c e model, WGIII rios ^d lex models, RCP rios only ^c e model, WGIII rios ^d	- 66% 2250 2250 No data 400 No data 400	50% 2250 2300 to 2350 Cu 550 to 600	2550 2400 to 2950 mulative CO ₂ 850 600 to 1150	2900 2550 to 3150 emissions fro 1000 750 to 1400	50% 3000 2900 to 3200 m 2011 in Gr 1300 1150 to 1400	3300 2950 to 2950 to 3800 tCO2 1500 1150 to 1	4200 n.a.* 2400	50% 4500 4150 to 5750 2800 2350 to	4850 5250 to 600 3250									
Fractie meetii Comp scenai Simple scenai Simple scenai Simple scenai	on of simulations ng goal ^b lex models, RCP rios only ^c e model, WGIII rios ^d lex models, RCP rios only ^c e model, WGIII rios ^d fossil carbon availab	- 66% 2250 2250 No data 400 No data ke in 2011 f: 367	50% 2250 2300 to 2350 Cu 550 550 to 600 0 to 7100 Gt CO ₂ (2550 2400 to 2950 mulative CO ₂ 850 600 to 1150 reserves) and 37	2900 2550 to 3150 emissions fro 1000 750 to 1400	50% 3000 2900 to 3200 m 2011 in Gr 1300 1150 to 1400 CO ₂ (resources)	3300 2950 to 3800 CO2 1500 1150 to 2050	4200 n.a. ¢ 2400 n.a. ¢	50% 4500 4150 to 5750 2800 2350 to 4000	4850 5250 to 600 3250 3500 to 4250									
Fractie meetii Comp scenai Simple scenai Simple scenai Simple scenai	on of simulations ng goal ^b lex models, RCP rios only ^c e model, WGIII rios ^d lex models, RCP rios only ^c e model, WGIII rios ^d	- 66% 2250 2250 No data 400 No data ke in 2011 f: 367	50% 2250 2300 to 2350 Cu 550 550 to 600 0 to 7100 Gt CO ₂ (2550 2400 to 2950 mulative CO ₂ 850 600 to 1150 reserves) and 37	2900 2550 to 3150 emissions fro 1000 750 to 1400	50% 3000 2900 to 3200 m 2011 in Gr 1300 1150 to 1400 CO ₂ (resources)	3300 2950 to 3800 CO2 1500 1150 to 2050	4200 n.a. ¢ 2400 n.a. ¢	50% 4500 4150 to 5750 2800 2350 to 4000	4850 5250 to 600 3250 3500 to 4250									

Carbon Dioxide Removal (CDR) Costs

9


The future costs of CDR are very difficult to predict. In the recently published book "Climate Intervention – Carbon Dioxide Removal and Reliable Sequestration" the National Resource Council (NRC) estimated costs for "bio-energy with carbon capture and storage" (BECCS) at about \$100/ton CO2 and for "direct air capture" (DAC) at \$400-\$1000/ton CO2 (Table 2.2 in the report). Other CDR methods are available but may also be of little use given the magnitude of the problem. Due to the likely limited availability land for of BECCS and because of the really large quantities of CO2 that must be removed, DAC removal will likely need to be used most widely.

Assuming some progress in the coming years, a reasonable CCS cost between now and 2055 might be \$50/ton CO2 (which can be used for future fossil fuel emissions).

Given both the amount of CO2 that needs to be removed (over 2000 GTCO2) and the rate of capture for the various alternatives, BECCS and DAC are the only viable alternatives for CDR. And given the limitations of land for BECCS, DAC is the only method that captures CO2 in the needed quantities. Assuming technological advances, if DAC costs can be reduced by a factor of four, costs later this century might be \$100/ton CO2.

(What would be really important to determine is the energy requirement to compress the captured CO2 and compress it. It should then be possible to estimate the number of "power plant equivalents" to compress and sequester annually 1 PPM of the atmospheric CO2.)

	CDR Method	Rate of Capture or Sequestration [GtCO ₂ /yr]	Cumulative CDR to 2100 [GtCO ₂]	Cost [\$/tCO ₂]		Limitations
	Land Management Afforestation/ Reforestation	2-5ª	100 ^b	1-100 ^e	defo • Deci • Con	restation/past land uses reased biodiversity upetition for land for agricultural uction
Combined Capture and Sequestration	Accelerated Weathering: Land	2 (U.S. only)	~100 (U.S. only)	20-1,000 ^e	aggr	I—available cheap alkalinity and egate markets for product an—available cheap alkalinity
	Ocean Ocean Iron Fertilization	1 ^d 1-4 ^g	~ 100 90-300	50-100 ^{gf} 500 ^h	pote	ronmental consequences and ntial co-benefits
Capture	Bioenergy with Capture	15-18 ⁱ ⁽ Theoretical)	100-1,000 ⁱ	~100 ^k	 Sec 1,0 mil amo bio signed 	ertainty in net carbon sequestration uestration of 18 GtCO ₂ /yr requires ~ 00 million acres of arable land (1,530 I. acres available worldwide ¹ , actual ount of arable land available for energy production will likely be hificantly less because much of arable d area is required for food production)
	Direct Air Capture	10 ^m (U.S. only)	~1,000 (U.S. only)	400-1,000 ⁿ		available for solar ~ 100,000,000 s of BLM land in Southwest United s ^o
Sequestration	Geologic	1-20 ^p (2DS)	800 ^p (2DS)	10-20 ^q		neability of formation, number of s, and overall size of the sequestration voir
	Ocean (molecular CO ₂)	?	2,000 to 10,000 ^r	10-20 ^r		ronmental consequences associated ocean acidification
	Ocean (CO ₂ neutralized with added alkalinity)	? ^s	? ^s	10-100 ^r	• Ava	lability of alkaline minerals
Richards, 2005; carbonation via captured per yea 2013; ⁱ Kriegler carbon capture a	and IPCC, 2014b; ^d Kirchofer of olivine at 155C and electric en tr, assuming wind as energy res et al., 2013 and Azar et al., 201 at a conventional coal-fired pow imate of ~11 acres per MW ele 00 acres required to remove en fiset emissions of the 500-MW 12; ^p Assuming increasing rate tired projections to limit total g	et al., 2012; McI ergy source from source; ^f IPCC, 2 0; ^{jk} Lenton, 201 ver plant (Rubin ctricity used for hissions associate power plant is o of sequestration. lobal warming to quilibrium with	Laren, 2012;Rau et a n coal (Kirchofer et 014a; McLaren, 20 0, Lenton and Vaug and Zhai, 2012); ^{1,1} powering DAC, an ed with one 500-M ² nly 33 acres; ⁿ Mazz : 1 GtCO ₂ /yr in 202 o 2°C (IEA, 2013b atmospheres rangin	al., 2013; ^e assi al., 2012); occ 12; Rau et al., than, 2009, and Alexandratos a d based upon t W power plant cotti et al., 201 5, 7.5 GtCO ₂ /y) and gives a tu g from 350 pp	ming ~4 nn/land r 013; ^{hg} / Kriegle d Bruin e range (i.e., 11, ; House r in 2050 tal amou n to 1,00	Richards and Stokes, 2004; Stavins and .65 GJ/tCO ₂ for the case of mineral equirement of $< 7 \times 10^5$ km ² /GtCO ₂ xumont and Bopp, 2006; ^h Harrison, r et al., 2013; ^k Assuming similar costs to sma, 2012; ^m if fueled from solar, of energy requirement estimates in the 000 tons CO ₂ /day), Note: the single et al., 2011; ^o Bureau of Land 0, and 19 GtCO ₂ /yr in 2100, which is nt sequestered of 800 GtCO ₂ ; ^a NETL, 10 ppm (IPCC, 2005); ^s No specific upper nomic and/or local environmental
literature, ~31,0 DAC plant to of Mangement, 20 based upon requ 2013; ITFCCS, bounds appear in concerns and no	n the literature, but maximum r at any fundamental physical bar				-	
literature, ~31,0 DAC plant to of Mangement, 20 based upon requ 2013; ITFCCS, bounds appear in concerns and no	n the literature, but maximum r at any fundamental physical bar		ntervention-ca	arbon-dio	-	moval-and-reliable-sequestration
literature, ~31,0 DAC plant to of Mangement, 20 based upon requ 2013; ITFCCS, bounds appear in concerns and no ttp://www.r	n the literature, but maximum r t any fundamental physical bar hap.edu/catalog/1880 ing feedbacks are alro	5/climate-in eady signifi edo decrea	cant se caused by v		ide-re	· · · · · · · · · · · · · · · · · · ·
literature, ~31,0 DAC plant to of Mangement, 20 based upon requ 2013; ITFCCS, bounds appear in concerns and no ttp://www.r ilobal warm Observationa ept 2013 ttp://www.p	n the literature, but maximum r t any fundamental physical bar nap.edu/catalog/1880 ing feedbacks are alro l determination of alb mas.org/content/111	5/climate-ir eady signifi edo decrea /9/3322.full	cant se caused by v	vanishing <i>i</i>	ide-re	· · · · · · · · · · · · · · · · · · ·

Widespread thawing of the permafrost								
"The <u>new research</u> suggests that based on what's happened in the Earth's past, global temperatures 1.5 degrees Celsius above pre-industrial levels could cause vast areas of carbon-rich permafrost to thaw."								
https://www.carbonbrief.org/new-research-projects-widespread-permafrost-thaw-with-1-5-degrees-of-warming								
"It's certainly not much of a stretch of the imagination to think that over the coming decades, we could lose a couple of gigatons [of carbon] per year from thawing permafrost," says Holmes. <u>https://www.washingtonpost.com/news/energy-environment/wp/2015/04/01/the-arctic-climate-threat-that- nobodys-even-talking-about-yet/</u>								
If only a small fraction of Arctic carbon is released into the atmosphere the result could be catastrophic								
"Even if a small fraction of the Arctic carbon were released to the atmosphere, we're fucked," Dr Jason Box								
http://motherboard.vice.com/read/if-we-release-a-small-fraction-of-arctic-carbon-were-fucked-climatologist								
Climate Impacts vs. Temperature Increase In the chart below, Caldeira and his colleagues graphed the extent of damage from climate change on								
various sectors of the environment. They found that the sensitivity of some of these categories to small increases in temperature will be highest within the first several degrees of warming, and then tapers off, having hit a physical limit, or what the researchers call a "saturation of impacts," as in the case of coral reefs at two degrees Celsius. Once the planet gets into the higher degrees of warming, the rate of impact begins to plateau—because there won't be anything left to be affected. 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0								
0.8 1 De 0.6 0.4 0.2 0.2 0.2 0.8 1 De 0.4 0.4 0.2 0.2 0.8 1 De 0.4 1 De 0								
0.0 0 1 2 3 4 5 6 Global Temperature Change (°C) Some climate change impacts rise fast with little warming, and then taper off, write a team of researchers in a paper published during the 2015 Paris climate talks. RICKE ET AL/NATURE GEOSCIENCE http://www.newsweek.com/earth-resources-ruined-two-degrees-warming-threshold-404406								

16	Sea Level Rise
	Looking the geologic record, sea level rise has typically been about 10– 20 m/°C. Given that we are currently committed to at least a 2°C temperature increase, the long-term sea level rise will likely be at least 20 meters (over 60 feet) <u>http://ccdatacenter.org/documents/Sea%20Level%20Rise.pdf</u>
17	Ocean Acidification
	"We are now carrying out an extraordinary chemical experiment on a global scale. Our fossil-fuel emissions raise the dissolved CO ₂ levels in the ocean, which reduces carbonate ion concentrations and lowers pH. The ocean's sunlit surface layer (the top 100 yards or so) could easily lose 50 percent of its carbonate ion by the end of this century unless we reduce emissions dramatically. Marine animals will find it harder to build skeletons, construct reefs, or simply to grow and breathe. Compared with past geologic events, the speed and scale of this conversion is astonishing." http://www.scientificamerican.com/article/rising-acidity-in-the-ocean/