The basic problem, as I see it, is that, based on likely anthropogenic GHG emissions and climate feedbacks, we are almost certainly headed towards a "hothouse Earth" unless many gigatons of carbon are removed annually from the atmosphere. But although we can likely afford the necessary costs there is very little likelihood that politicians will actually allocate the necessary funds for the needed carbon dioxide removal. There is no detailed plan under discussion that will remotely come close to both reducing emissions fast enough and paying for massive carbon dioxide removal. About all that has been proposed is a carbon tax (which, politically, cannot not be high enough to really be effective), the "free market" with minor government incentives, and sequestering carbon in the biosphere (which lacks the needed capacity). Also, the models that were used to develop the carbon budgets are very conservative, not fully taking into account albedo changes in the Arctic, emissions from natural feedbacks, etc. So the situation is much more dire than the recent IPCC 1.5°C report indicated and the general public is totally unaware of the sacrifices that would need to be made to prevent catastrophic climate change.

To keep the Earth's average temperature from rising more than 1.5°C, the IPCC assessment is that net-zero global emissions will be required in just a few decades. But emissions are likely to increase between now and 2050^{1,2} as world GDP increases³ (and there has been a very strong (logarithmic) correlation between GDP and atmospheric CO2 for several hundred years⁴), which will likely result in a temperature increase of around 2°C between 2050 and 2060⁵. Given reasonable expectations for climate feedbacks, non-CO2 radiative forcing, and climate sensitivity, there is, for all practical purposes, no carbon budget left⁶. If CO2 emissions could be reduced by 2%/year after 2030 (and this is not likely) and if average carbon dioxide removal costs between now and 2050 can be reduced to about \$250/ton C then cumulative global CDR costs would likely be over \$175 trillion (\$25 trillion for the U.S.) by 2100 if the Paris temperature target is to be met⁷.

A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several meters on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise. (https://m.phys.org/news/2018-07-global-climate.html#jCp)

Given that it is unlikely that our society will pay enough to limit the temperature increase to 2.0°C this century, the most important questions become: (1) How quickly will the temperature increase this century? (2) What effects will we see for various temperature increases? and (3) What is the best way to prepare for the expected temperature increase?

02 Budge	t 2019-21	00 = 0	CO2 B	udget	2016-	2100	- 35										
		Temp	Incre	ase:	1.5	°C											
		Climate Sensititivity															
		2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0
	0.0	520	447	386	334	290	252	218	188	162	138	117	98	81	65	50	37
	0.1	485	414	354	303	259	222	189	160	134	111	90	71	54	38	24	11
	0.2	451	381	322	272	229	192	160	132	106	83	63	45	28	12	-2	-15
	0.3	418	348	291	242	200	164	132	104	79	57	37	18	2	-13	-27	-40
	0.4	385	317	260	212	171	135	104	77	52	30	11	-7	-23	-38	-52	-64
	0.5	352	286	230	183	143	108	77	50	26	5	-15	-32	-48	-63	-76	-88
Non-	0.6	321	255	201	154	115	81	51	24	0	-21	-40	-57	-72	-87	-100	-112
O2 RF	0.7	290	225	172	126	88	54	24	-2	-25	-45	-64	-81	-96	-110	-123	-135
//m-2)	0.8	259	196	143	99	61	28	-1	-27	-49	-70	-88		-120		-146	
	0.9	229	167	116	72	34	2	-26	-51	-74			-128				
	1.0	200	139	88	45	9	-23	-51	-76	-98	-117	-135	-151	-165	-178	-190	-202
	1.1	171	111	61	19	-17	-48	-75	-100	-121	-140	-157	-173	-187	-200	-212	-223
	1.2	142	84	35	-6	-42	-72	-99				-180		-209	-222	-233	-244
	1.3	115	57	9	-31	-66						-202		-230		-254	-265
	1.4	87	31	-16	-56								-238	-251	-264	-275	-285
							2 Budg	get 20	19-21	00 (En	nissio	ns - G	тс)				
		Temp	Incre	ase:	2.0	°C											
	-	Climate Sensititivity															
		2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8		4.2	4.4	4.6	4.8	
	0.0	789	691	610	541	482	431	386	346	311	280	252	226	203	181	162	144
-	0.1	749	653	573	506	448	398	354	315	280	249	222	197	174	153	134	116
	0.2	710	616	538	471	414	365	322	284	250	220	192	168	145	125	106	89
	0.3	672	579	502	437	381	333	291	253	220	190	164	139	117	97	79	62
-	0.4	634	543	468	404	349	302	260	223	191	162	135	112	90	70	52	36
Non-	0.5 0.6	597 561	508 474	434 401	371 339	318 286	271 241	230 201	194 165	162 134	133 106	108 81	84 58	63 37	44 18	26 0	10 -16
O2 RF	0.0	525	440	368	308	256	241	172	137	106	79	54	31	11	-8	-25	-10
//m-2)	0.7	490	406	336	277	226	182	143	109	79	52	28	6	-14	-33		-40
	0.8	456	374	305	247	197	153	116	82	52	26	20	-20	-39	-57	-74	-89
	1.0	423	341	274	217	168	125	88	55	26	0	-23	-45	-64	-81	-98	
	1.0	390	310	244	188	139	98	61	29	1	-25	-48	-69		-105		-136
	1.2	357	279	214	159	112	71	35	3	-25	-50	-72		-111			
	1.3	325	249	185	131	84	44	9	-22	-49	-74		-116				
	1.4	294	219	156	103	58	18	-16	-47	-74			-139				
												ns - G					
• Ye	llow cells	sho	N CON	nbina	tions			-						dget	of an	ound	190
	at put foi										•			-			

- GTC (assuming natural emissions of roughly 120 GTC⁵)
- Green cells show the total CO2 budget for a value of climate sensitivity slightly below that which was demonstrated by the models that best capture current conditions^{6,7}
- Purple cells show the CO2 budget for the non-CO2 radiative forcing for RCP 4.5³
- http://ccdatacenter.org/documents/CarbonBudgetsAlternativeAnalysis.pdf
- 7 <u>http://ccdatacenter.org/documents/CDRUSCostExpectations.pdf</u>