- The oceans have absorbed about 30 percent of the CO2 emitted from all human activities (about 530 GTCO2 from 1750-2005), and this has increased the oceans' acidity about 30 percent^{1,2}.
- Because of increased ocean acidification, new shells end up being thinner and more fragile while existing shells become pitted and weak¹.
- If CO2 emissions continue at the current rate the ocean pH will likely drop another 0.3 to 0.4 pH units by2100, which would kill off most corals and shell fish³.
- For the Southern Ocean, the acidification tipping point is about 450-ppm atmospheric CO2, which will be reached in less than 20 years at the current rate of increase (2.11PPM/Year from 2005-2015, while there was a 3% increase from 2015 to 2016)^{3,3A}.
- By 2050, live corals could become rare in tropical and sub-tropical reefs due to the combined effects of warmer water and increased ocean acidity⁴.
- Oceans could lose up to \$1 trillion in annual value by 2100 due to acidification⁵
- Sea bass and other species targeted by fishing fleets could decline as a result of fish losing sense of smell in acidic ocean as they use their sense of smell to avoid predators and to find food⁶

OA1 Effects of Changing the Carbon Cycle About 30 percent of the carbon dioxide that people have put into the atmosphere has diffused into the ocean through the direct chemical exchange. Dissolving carbon dioxide in the ocean creates carbonic acid, which increases the acidity of the water. Or rather, a slightly alkaline ocean becomes a little less alkaline. Since 1750, the pH of the ocean's surface has dropped by 0.1, a 30 percent change in acidity. Ocean acidification affects marine organisms in two ways. First, carbonic acid reacts with carbonate ions in the water to form bicarbonate. However, those same carbonate ions are what shell-building animals like coral need to create calcium carbonate shells. With less carbonate available, the animals need to expend more energy to build their shells. As a result, the shells end up being thinner and more fragile. Second, the more acidic water is, the better it dissolves calcium carbonate. In the long run, this reaction will allow the ocean to soak up excess carbon dioxide because more acidic water will dissolve more rock, release more carbonate ions, and increase the ocean's capacity to absorb carbon dioxide. In the meantime, though, more acidic water will dissolve the carbonate shells of marine organisms, making them pitted and weak. Warmer oceans—a product of the greenhouse effect—could also decrease the abundance of phytoplankton, which grow better in cool, nutrient-rich waters. This could limit the ocean's ability to take carbon from the atmosphere through the fast carbon cycle. On the other hand, carbon dioxide is essential for plant and phytoplankton growth. An increase in carbon dioxide could increase growth by fertilizing those few species of phytoplankton and ocean plants (like sea grasses) that take carbon dioxide directly from the water. However, most species are not helped by the increased availability of carbon dioxide. https://earthobservatory.nasa.gov/Features/CarbonCycle/page5.php

OA2		Historic levels Pr	edicted levels
	1000	Dissolved carbon dioxide Micrograms/kg 2100 926.7	Ocean pH
	850		1850 2005 2100 8.16 8.05 7.85 8.2
	700	2005 529.9	More ac
	550 18 39	350 98.1	acidic →
	400 185	0 1900 1950 2000 2050 2100	7.8 1850 1900 1950 2000 2050 2100
	Based or Imbalan	ce". See also "Ocean acidificatio	nospheric carbon dioxode, Altered Oceans: A Chemical n due to increasing atmospheric carbon dioxide"
OA3	If CO2 em which wc 450-ppm than 20 y	uld kill off most corals and shell fish atmospheric CO2 (<u>http://www.pnas</u> ears at the current rate of increase (yal Soc OA.pdf) the ocean pH will likely drop another 0.3 to 0.4 pH units by2100, . For the Southern Ocean, the acidification tipping point is about s.org/content/105/48/18860.long), which will be reached in less [2.11PPM/Year]. Ocean Acidification will almost certainly be ny reasonable CO2 emissions mitigation scenario
OA3A	Ocean ac In new re and kelp	idification is having major impact o search, scientists say cuts in global (
		oxide emissions are killing off coral narine ecosystems, scientists have w	reefs and kelp forests as heat waves and ocean acidification varned.
		2 levels continue to rise as predicted	, the coming decades and lowering seawater pH levels will have an
	even grea	iter and potentially catastrophic imp	pact.
		nter and potentially catastrophic imp ww.sciencedaily.com/releases/2018	
OA4	https://w		
OA4	https://w Plants, A By 2050, water and	ww.sciencedaily.com/releases/2018 nimals, and Ecosystems live corals could become rare in trop d increased ocean acidity caused by abitats for many other sea creatures	
	https://w Plants, A By 2050, water and reduce ha in the occ https://w	ww.sciencedaily.com/releases/2018 nimals, and Ecosystems live corals could become rare in trop d increased ocean acidity caused by abitats for many other sea creatures ean. ww3.epa.gov/climatechange//kids/	<u>B/07/180728083507.htm</u> Dical and sub-tropical reefs due to the combined effects of warmer more carbon dioxide in the atmosphere. The loss of coral reefs will , and it will disrupt the food web that connects all the living things
OA4 OA5	https://w Plants, Al By 2050, water and reduce ha in the oce https://w Oceans C	ww.sciencedaily.com/releases/2018 nimals, and Ecosystems live corals could become rare in trop d increased ocean acidity caused by abitats for many other sea creatures can.	3/07/180728083507.htm bical and sub-tropical reefs due to the combined effects of warmer more carbon dioxide in the atmosphere. The loss of coral reefs will , and it will disrupt the food web that connects all the living things impacts/effects/ecosystems.html o Acidification

	One estimate looking only at lost ecosystem protections, such as that provided by tropical reefs, cited an
	economic value of \$1 trillion annually.
	https://www.scientificamerican.com/article/oceans-could-lose-1-trillion-in-value-due-to-acidification/
	https://www.natureworldnews.com/articles/9469/20141008/ocean-acidification-cost-world-coral-trillion-
046	dollars.htm Tick leging cores of small in egidie occor
OA6	Fish losing sense of smell in acidic ocean
	Ben Webster, Environment Editor July 24 2018, 12:01am, The Times
	Fish are losing their sense of smell as the ocean absorbs rising levels of carbon dioxide in the atmosphere and
	becomes more acidic, a study found.
	Sea bass and other species targeted by fishing fleets could decline as a result because they use their sense of
	smell to avoid predators and to find food.
	https://www.thetimes.co.uk/edition/news/fish-losing-sense-of-smell-in-acidic-ocean-carbon-dioxide-7xznbdx63
	Current understanding and challenges for oceans in a higher-CO2 world
	Catriona L. Hurd, Andrew Lenton, Bronte Tilbrook & Philip W. Boyd
	Nature Climate Change (2018) Published: 23 July 2018
	Abstract
	Ocean acidification is a global phenomenon, but it is overlaid by pronounced regional variability modulated by
	local physics, chemistry and biology. Recognition of its multifaceted nature and the interplay of acidification
	with other ocean drivers has led to international and regional initiatives to establish observation networks and
	develop unifying principles for biological responses. There is growing awareness of the threat presented by
	ocean acidification to ecosystem services and the socio-economic consequences are becoming increasingly
	apparent and quantifiable. In this higher-CO2 world, future challenges involve better design and rigorous testing
	of adaptation, mitigation and intervention options to offset the effects of ocean acidification at scales ranging
	from local to regional.
	https://www.nature.com/articles/s41558-018-0211-0
	Ocean acidification will likely have severe impacts before 2050
	FAQs about Ocean Acidification
	Thus, a 2° C increases in terms results in shout a 10° decreases in carbon untake in surface waters
	Thus, a 2°C increase in temperature results in about a 10% decrease in carbon uptake in surface waters.
	marine shellfish that have evolved in seawater with a higher and less variable pH are more susceptible to
	changes in pH
	Will ocean acidification kill all ocean life?
	No. However, many scientists think that ocean acidification will lead to important changes in marine
	ecosystems.
	In general, ocean life recovers from extinction episodes by adaptation and evolution of new species, but this
	takes roughly 10 million years to achieve pre-extinction levels of biodiversity.
	Today's rates of CO2 increase in the atmosphere are therefore approximately 100 times greater than most
	changes sustained over geologic time.
	It is within our technical and economic means to modify our energy and transportation systems and land-use
	practices to largely eliminate carbon dioxide emissions from our economies by mid-century. It is thought that

the cost of doing this — perhaps 2% of the worldwide economic production — would be small, yet at present it has proven difficult for societies to decide to undertake this conversion. — Ken Caldeira, Senior Scientist, Carnegie Institution for Science, USA

http://www.whoi.edu/page.do?pid=83380&tid=7342&cid=131410

The	Ocean Is Acidifying
The	ocean absorbs about <u>30 percent</u> of the CO2 emitted from human activities.
wasr unch drop 0.11	n the ocean absorbs CO2, it converts the gas into carbonic acid. Until the Industrial Revolution, there i't enough carbonic acid in the water to unbalance the ecosystem. But after more than a century of ecked carbon emissions, the ecosystem has been measurably upended. The <u>pH level</u> of surface waters has ped from 8.18 to 8.07, an unprecedented shift in the last <u>300 million years</u> of the fossil record. [a change of in pH corresponds to an increase of about 30% in the hydrogen ion concentration s://www.pmel.noaa.gov/co2/story/A+primer+on+pH)]
with oyste	eans less calcium carbonate. This mineral is a key ingredient in the shells of several marine species, and out it, fewer shellfish are surviving to adulthood. One oyster farm in Washington state reported that their er production declined by <u>42 percent</u> in just 10 years. The tiny shellfish that feed Alaska's salmon stocks <u>are</u> <u>in danger</u> , to say nothing of the state's lucrative crab fishery.
<u>cora</u>	onic acid not only dissolves calcium carbonate, it also dissolves limestone, which makes it <u>more difficult for</u> to grow. Combine that with the reduction of pteropods and other zooplankton at the bottom of the food and the impacts to marine life are potentially catastrophic.
sugg them	above sea level will also be impacted. Investigations of carbon upwelling zones along the West Coast est that lower pH levels make it more difficult for certain phytoplankton to absorb nutrients, rendering n vulnerable to disease and toxins. And that's a problem, because healthy phytoplankton produce about 60 ent of the oxygen on Earth.
	the disappearance of microscopic pteropods, losing coral has a major ripple effect across the marine food n. Though they cover less than one percent of the ocean floor, coral reefs support a quarter of all marine
	://www.huffingtonpost.com/pierce-nahigyan/ocean-acidification-is-ba_b_8952240.html
Ocea	In Acidification
that solut corro	ming a "business-as-usual" IPCC CO2emission scenario, predictive models of ocean biogeochemistry project surface waters of the Arctic and Southern Oceans will become undersaturated with aragonite (a more ole form of calcium carbonate) within a few decades, meaning that these waters will become highly osive to the shells and skeletons of aragonite-producing marine calcifiers like planktonic marine snails wn as pteropods.
	//www.whoi.edu/ocean-acidification/
Oce	ean pH vs Atmospheric CO2 PPM

	industrial	Today	2×pre- 3×pr	- 4×pre-	5×pre-`	6×pre-	If CO2 emissions continue on current
Atmospheric	280 ppm		dustrial industri		1400 ppm	industrial 1680 ppm	trends, this could result in the average
concentration of CO ₂ H ₂ CO ₃ (mol/kg)	9	13		8 38	47	56	pH of the surface oceans decreasing by
HCO3*(mol/kg)	1768	1867	1976 20	0 2123	2 160	2183	0.5 units below the level in pre-
CO ₃ ²⁻ (mol/kg) Total dissolved inorganic	225	185 2065	141 10 2136 220		67 2272	57 2296	industrial times, by 2100. This is
carbon (mol/kg) Average pH of surface	8.18	8.07	7.92 7.3	7 7.65	7,56	7.49	beyond the range of natural variability
Calcite saturation	5.3	4.4		4 1.9	1.6	1.3	and represents a level probably not
Aragonite saturation	3.4	2.8	2.1 1	6 1.2	1.0	0.9	experienced for at least hundreds of
Table 1. Chang	ges to o	cean c	hemistry a	nd pH esti	mated u	using the	thousands of years and possibly much
OCMIP3 mode	els calcu	lated f	rom surfac	e ocean r	neasure	ments and	longer (Caldeira & Wickett 2003).
our understan	nding of	ocean	chemistry.	Note tha	t the co	ncentration	Critically, the rate of change is also at
of bicarbonate	e ion (H	CO3 –	and carbo	nic acid (H2CO3)	increase	least 100 times higher than the
with rising atn	nosphe	ric con	centration	of CO2 w	nile carb	onate ion	maximum rate observed during this
(CO3 2–) decr							time period. These changes are so rapi
decreases wit	h increa	asing at	mospheric	CO2 cond	centratio	on.	that they will significantly reduce the
(Assumptions		-	•				buffering capacity of the natural
temperature =				•		-	processes that have moderated
Pierre Simon I			-	-			changes in ocean chemistry over most
calculated as	•	•	•				of geological time.
modelling is b			-				
Royal Society						val Soc OA	pdf
							oceanacidification-icc.org/
Climate Science						1,110110	
Fourth Nationa			-				
Chapter 13: Oc			on and Oth	er Ocean	Change	S	
13.3: Ocean Ac							
13.3.1 General	Backgro	ound					
			c in climate	, increasi	ng atmo	spheric leve	s of carbon dioxide (CO2) from the
n addition to c	ausing	change	Sincinate	,			
	0	•		-	includir	ng changes ir	land use, have a direct effect on ocean
burning of fossi	il fuels a	and oth	ier human	activities,			land use, have a direct effect on ocean n waters absorb part of the increasing
burning of fossi carbonate cher	il fuels a nistry tl	and oth hat is to	er human ermed ocea	activities, n acidific	ation., S	Surface ocea	
burning of fossi carbonate cher CO2 in the atm	il fuels a nistry tl osphere	and oth hat is to e, whic	er human ermed ocea h causes a	activities, n acidific variety of	ation., s chemica	Surface ocea al changes ir	n waters absorb part of the increasing
burning of fossi carbonate cher CO2 in the atm pressure of CO2	il fuels a nistry tl osphere 2 (pCO2	and oth hat is to e, whic 2,sw), d	er human ermed ocea h causes a issolved in	activities, in acidific variety of organic ca	ation. , s chemica arbon (D	Surface ocea al changes ir IC), and the	n waters absorb part of the increasing seawater: an increase in the partial
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior	il fuels a nistry tl osphere 2 (pCO2 ns and a	and oth hat is to e, whic 2,sw), d decre	er human ermed ocea h causes a issolved in ase in the o	activities, in acidific variety of organic ca oncentra	ation. , s chemica arbon (D tion of c	Surface ocea al changes ir IC), and the arbonate ion	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines	il fuels a nistry tl osphere 2 (pCO2 ns and a with wa	and oth hat is to e, whic 2,sw), c decre ater to	er human ermed ocea h causes a issolved in ase in the o form carbo	activities, n acidific variety of organic ca oncentra nic acid, v	ation., S chemica arbon (D tion of c vhich th	Surface ocea al changes ir IC), and the arbonate ion en dissociate	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and is (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions.
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines Increasing conc	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centration	and oth hat is to e, whic 2,sw), d a decre ater to ons of	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h	activities, n acidific variety of organic ca oncentra nic acid, v ydrogen i	ation., S chemica arbon (D tion of c vhich th ons resu	Surface ocea al changes ir IC), and the arbonate ion en dissociate Ilt in a decre	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and hs (Figure 13.4). In brief, CO2 is an acid g
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines Increasing conc conversion to b	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centrationicarbor	and oth hat is to e, whic 2,sw), d decre ater to ons of nate ion	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h ns. The con	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio	ation., s chemica arbon (D tion of c vhich th ons resu n of cark	Surface ocea al changes in IC), and the arbonate ion en dissociate It in a decre ponate ions i	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and is (Figure 13.4). In brief, CO2 is an acid g to hydrogen and bicarbonate ions. ase of carbonate ions through their in seawater affects saturation states for
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines Increasing conc conversion to b calcium carbon	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centrationicarbor ate con	and oth hat is to e, whice, whice (,sw), d decre oter to ons of hate ion hpound	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any mari	ation., s chemica arbon (D tion of c which th ons resu n of cark ne speci	Surface ocea al changes in IC), and the arbonate ion en dissociate It in a decre ponate ions i es use to bu	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and as (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their n seawater affects saturation states for Id their shells and skeletons. Ocean acid
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines Increasing conc conversion to b calcium carbon refers to the co	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centrationicarbor ate con oncentra	and oth hat is to e, whice, whice e, sw), co decreater to ons of hate ion hate ion haton o	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m f hydrogen	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any marii ions in oc	ation., s chemica arbon (D tion of c which th ons resu n of cark ne speci- cean sea	Surface ocea al changes in IC), and the arbonate ion en dissociate It in a decre conate ions i es use to bu water regard	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and is (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their in seawater affects saturation states for Id their shells and skeletons. Ocean acid lless of ocean pH, which is fundamental
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines Increasing conc conversion to b calcium carbon refers to the co basic (e.g., pH >	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centration icarbor ate con oncentra > 7). Oce	and oth hat is to e, whice (,sw), co decre- neter to ons of nate ion npound ation o ean sur	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m f hydrogen face water	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any mari ions in oc s have be	ation., S chemica arbon (D tion of c vhich th ons resu n of cark ne speci- cean sea come 30	Surface ocea al changes in IC), and the arbonate ion en dissociate ult in a decre oonate ions i es use to bu water regare 0% more acio	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and is (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines conversion to b calcium carbon refers to the co basic (e.g., pH >	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centrationicarbor ate con oncentra > 7). Occ amoun	and oth hat is tr e, whice (,sw), d a decre ater to ons of nate ion npound ation o ean sun ts of C	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m f hydrogen face water D2 from th	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any mari ions in oc s have be e atmospl	ation., s chemica arbon (D tion of c which th ons resu n of cark ne speci- cean sea come 30 nere, an	Surface ocea al changes in IC), and the arbonate ion en dissociate ult in a decre bonate ions i es use to bu water regard 0% more acie d anthropog	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and as (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their in seawater affects saturation states for Id their shells and skeletons. Ocean acid lless of ocean pH, which is fundamental dic over the last 150 years as they have enically sourced CO2 is gradually invadir
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines conversion to b calcium carbon refers to the co basic (e.g., pH > absorbed large into oceanic de	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centration bicarbor ate com oncentra > 7). Occ amoun ep wate	and oth hat is tree, whice, whice e, whice, whice e, sw), control of the start of the switch of the switch hate ion hate ion hate ion hate ion hate ion hate ion hate ion hate ion hate ion hate ion hate ion hate	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m f hydrogen face water D2 from th ce the prei	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any marii ions in oc s have be a atmospl ndustrial	ation., s chemica arbon (D tion of c which th ons resu n of cark ne speci- cean sea come 30 nere, an period, f	Surface ocea al changes in IC), and the arbonate ion en dissociate ult in a decre conate ions i es use to bu water regard 0% more acie d anthropog the oceans h	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and is (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their in seawater affects saturation states for Id their shells and skeletons. Ocean acid lless of ocean pH, which is fundamentall dic over the last 150 years as they have enically sourced CO2 is gradually invadir ave absorbed approximately 29% of all
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines conversion to b calcium carbon refers to the co basic (e.g., pH > absorbed large into oceanic de	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centration icarbor ate con oncentra > 7). Oct amoun ep wate o the atr	and oth hat is to e, whice (,sw), co a decre- nate to ons of nate ion nate	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m f hydrogen face water D2 from th ce the prei ere. Oceans	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any mari ions in oc s have be e atmospi ndustrial currently	ation., s chemica arbon (D tion of c which th ons resu n of cark ne speci- cean sea come 30 nere, an period, f	Surface ocea al changes in IC), and the arbonate ion en dissociate ult in a decre conate ions i es use to bu water regard 0% more acie d anthropog the oceans h	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and as (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their in seawater affects saturation states for Id their shells and skeletons. Ocean acid lless of ocean pH, which is fundamental dic over the last 150 years as they have enically sourced CO2 is gradually invadir
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines increasing conc conversion to b calcium carbon refers to the co basic (e.g., pH > absorbed large into oceanic de CO2 emitted to anthropogenica	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centrationicarbor ate con oncentra > 7). Occ amoun ep wate o the atr ally emi	and oth hat is tree, whice, whice, whice e, whice e, sw), d decree hater to ons of hate ion hate ion h	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m f hydrogen face water D2 from th ce the prei ere. Oceans to the atmo	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any mari ions in oc s have be e atmospi ndustrial currently	ation., s chemica arbon (D tion of c which th ons resu n of cark ne speci- cean sea come 30 nere, an period, f	Surface ocea al changes in IC), and the arbonate ion en dissociate ult in a decre conate ions i es use to bu water regard 0% more acie d anthropog the oceans h	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and is (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their in seawater affects saturation states for Id their shells and skeletons. Ocean acid lless of ocean pH, which is fundamentall dic over the last 150 years as they have enically sourced CO2 is gradually invadir ave absorbed approximately 29% of all
burning of fossi carbonate cher CO2 in the atm pressure of CO2 bicarbonate ior that combines increasing conc conversion to b calcium carbon refers to the co basic (e.g., pH > absorbed large into oceanic de CO2 emitted to anthropogenica	il fuels a nistry th osphere 2 (pCO2 ns and a with wa centration icarbor ate con oncentra ate con oncentra > 7). Occ amoun ep wate o the atr ally emi	and oth hat is to e, whice (,sw), co a decre- nate to ons of nate ion nate ion nate ion nation o ean sur ts of Cl ers. Sin mosphe tted in	er human ermed ocea h causes a issolved in ase in the o form carbo seawater h hs. The con ls, which m f hydrogen face water D2 from th ce the prei ere. Oceans to the atmo	activities, in acidific variety of organic ca oncentra nic acid, v ydrogen i centratio any marin ions in oc s have be e atmospi ndustrial currently osphere.	ation., s chemica arbon (D tion of c which th ons resu n of cark ne speci- cean sea come 30 nere, an period, 1 y absorb	Surface ocea al changes in IC), and the arbonate ion en dissociate onate ions i es use to bu water regare 0% more acid d anthropog the oceans h about 26%	n waters absorb part of the increasing seawater: an increase in the partial concentration of hydrogen and is (Figure 13.4). In brief, CO2 is an acid g es to hydrogen and bicarbonate ions. ase of carbonate ions through their in seawater affects saturation states for Id their shells and skeletons. Ocean acid lless of ocean pH, which is fundamentall dic over the last 150 years as they have enically sourced CO2 is gradually invadir ave absorbed approximately 29% of all

Surface waters in the open ocean experience changes in carbonate chemistry reflective of large-scale physical oceanic processes (see Ch. 2: Physical Drivers of Climate Change). These processes include both the global uptake of atmospheric CO2 and the shoaling of naturally acidified subsurface waters due to vertical mixing and upwelling. In general, the rate of ocean acidification in open ocean surface waters at a decadal time-scale

closely approximates the rate of atmospheric CO2 increase. Large, multidecadal phenomena such as the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation can add variability to the observed rate of change.

13.3.3 Coastal Acidification

Coastal shelf and nearshore waters are influenced by the same processes as open ocean surface waters such as absorption of atmospheric CO2 and upwelling, as well as a number of additional, local-level processes, including freshwater, nutrient, sulfur, and nitrogen inputs. , Coastal acidification generally exhibits higher-frequency variability and short-term episodic events relative to open-ocean acidification. , , , Upwelling is of particular importance in coastal waters, especially along the U.S. West Coast. Deep waters that shoal with upwelling are enriched in CO2 due to uptake of anthropogenic atmospheric CO2 when last in contact with the atmosphere, coupled with deep water respiration processes and lack of gas exchange with the atmosphere., Freshwater inputs to coastal waters change seawater chemistry in ways that make it more susceptible to acidification, largely by freshening ocean waters and contributing varying amounts of dissolved inorganic carbon (DIC), total alkalinity (TA), dissolved and particulate organic carbon, and nutrients from riverine and estuarine sources. Coastal waters of the East Coast and mid-Atlantic are far more influenced by freshwater inputs than are Pacific Coast waters. Coastal waters can episodically experience riverine and glacial melt plumes that create conditions in which seawater can dissolve calcium carbonate structures. , While these processes have persisted historically, climate-induced increases in glacial melt and high-intensity precipitation events can yield larger freshwater plumes than have occurred in the past. Nutrient runoff can increase coastal acidification by creating conditions that enhance biological respiration. In brief, nutrient loading typically promotes phytoplankton blooms, which, when they die, are consumed by bacteria. Bacteria respire CO2 and thus bacterial blooms can result in acidification events whose intensity depends on local hydrographic conditions, including water column stratification and residence time. Long-term changes in nutrient loading, precipitation, and/or ice melt may also impart long-term, secular changes in the magnitude of coastal acidification.

13.3.4 Latitudinal Variation

Ocean carbon chemistry is highly influenced by water temperature, largely because the solubility of CO2 in seawater increases as water temperature declines. Thus, cold, high-latitude surface waters can retain more CO2 than warm, lower-latitude surface waters. , Because carbonate minerals also more readily dissolve in colder waters, these waters can more regularly become undersaturated with respect to calcium carbonate whereby mineral dissolution is energetically favored. This chemical state, often referred to as seawater being "corrosive" to calcium carbonate, is important when considering the ecological implications of ocean acidification as many species make structures such as shells and skeletons from calcium carbonate. Seawater conditions undersaturated with respect to calcium carbonate are common at depth, but currently and historically rare at the surface and near-surface. Some high-latitude surface and near-surface waters now experience such corrosive conditions, which are rarely documented in low-latitude surface or near-surface systems. For example, corrosive conditions at a range of ocean depths have been documented in the Arctic and northeastern Pacific Oceans. , , , Storm-induced upwelling could cause undersaturation in tropical areas in the future. It is important to note that low-latitude waters are experiencing a greater absolute rate of change in calcium carbonate saturated state except within near-shore or some benthic habitats.

13.3.5 Paleo Evidence

Evidence suggests that the current rate of ocean acidification is the fastest in the last 66 million years (the K-Pg boundary) and possibly even the last 300 million years (when the first pelagic calcifiers evolved providing proxy information and also a strong carbonate buffer, characteristic of the modern ocean). , The Paleo-Eocene Thermal Maximum (PETM; around 56 million years ago) is often referenced as the closest analogue to the present, although the overall rate of change in CO2 conditions during that event (estimated between 0.6 and 1.1 GtC/year) was much lower than the current increase in atmospheric CO2 of 10 GtC/year. , The relatively slower rate of atmospheric CO2 increase at the PETM likely led to relatively small changes in carbonate ion

concentration in seawater compared with the contemporary acidification rate, due to the ability of rock weathering to buffer the change over the longer time period. Some of the presumed acidification events in Earth's history have been linked to selective extinction events suggestive of how guilds of species may respond to the current acidification event.

13.3.6 Projected Changes

Projections indicate that by the end of the century under higher scenarios, such as SRES A1FI or RCP8.5, openocean surface pH will decline from the current average level of 8.1 to a possible average of 7.8 (Figure 13.5). When the entire ocean volume is considered under the same scenario, the volume of waters undersaturated with respect to calcium carbonate could expand from 76% in the 1990s to 91% in 2100, resulting in a shallowing of the saturation horizons—depths below which undersaturation occurs. , Saturation horizons, which naturally vary among ocean basins, influence ocean carbon cycles and organisms with calcium carbonate structures, especially as they shoal into the zones where most biota lives. , As discussed above, for a variety of reasons, not all ocean and coastal regions will experience acidification in the same way depending on other compounding factors. For instance, recent observational data from the Arctic Basin show that the Beaufort Sea became undersaturated, for part of the year, with respect to aragonite in 2001, while other continental shelf seas in the Arctic Basin are projected to do so closer to the middle of the century (e.g., the Chukchi Sea in about 2033 and Bering Sea in about 2062). Deviation from the global average rate of acidification will be especially true in coastal and estuarine areas where the rate of acidification is influenced by other drivers than atmospheric CO2, some of which are under the control of local management decisions (for example, nutrient pollution loads).