There are several problems with presenting the IPCC's carbon budget in terms of "there is an XX% chance of meeting the NN° C temperature target if total emissions are less than MM GTC between now and 2100". First of all, even though that is what is almost universally used in discussions of limiting the temperature increase, a more accurate description of the findings is "XX% of the model runs with less than MM GTC emissions resulted in a temperature increase of less than NN° C". So if the models are not accurate (e.g., they do not include natural feedbacks from permafrost, surface waters, etc.) the anthropogenic budgets could be way off (and the actual anthropogenic budget could be close to zero). And second, there is no discussion (that I am aware of) regarding assumptions about mix of energy generation technologies used (BECCS, CSS, coal, oil, solar, wind, etc.), the non-CO2 radiative forcing, the uptake of CO2 by oceans and the biosphere, and the climate sensitivity implied by the mode results. But I think that the real problem was presenting the results as a "percent chance". In most cases, when we think about climate and the weather, we think of ourselves as "observers". We know that if we change our bad habits that we have a percentage chance of living longer and healthier lives. But when we think of weather forecasts, getting cancer, having a heart attack, being involved in an automobile accident, etc., we basically just go about our daily lives and hope for the best. And most people approach climate change in a similar way - since nothing that we do as individuals directly affects the climate in any measureable way, we sit back and hope the problem will be solved without us individually doing much of anything. (See also Footnote #1)

What I hope the information below (along with additional detail to follow) will do is shed some light on the difficulty of "solving" climate change. It's easy to just "draw a line" to show how much emissions need to be reduced. It is much more difficult to provide a integrated list of "detailed solutions" (along with costs) that are socially and politically acceptable.

The following tables contain CO2 Emissions budget (for both anthropogenic and natural emissions) for temperature increases of 1.5° C and 2.0° C for various climate sensitivities and non-CO2 radiative forcings. Note that N2O and CFCs have combined RFs of .34, .43, and .52 in RCPs 2.0, 4.5, and 6.0 respectively, so getting below a non-CO2 RF of 3 or 4 will not be possible unless aerosols (either from coal or solar radiation management) are present in large quantities

CO2 Budget = (278 * e((5.35 * Ln(1 + ET / CS) - NonCO2RF) /5.35) - 342.87) / 0.2586																	
Temp Increase: 1.5																	
			Climate Sensititivity														
		2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0
	0.0	555	482	421	369	325	287	253	223	197	173	152	133	116	100	85	72
	0.1	520	449	389	338	294	257	224	195	169	146	125	106	89	73	59	46
	0.2	486	416	357	307	264	227	195	167	141	118	98	80	63	47	33	20
	0.3	453	383	326	277	235	199	167	139	114	92	72	53	37	22	8	-5
	0.4	420	352	295	247	206	170	139	112	87	65	46	28	12	-3	-17	-29
	0.5	387	321	265	218	178	143	112	85	61	40	20	3	-13	-28	-41	-53
Non CO2	0.6	356	290	236	189	150	116	86	59	35	14	-5	-22	-37	-52	-65	-77
	0.7	325	260	207	161	123	89	59	33	10	-10	-29	-46	-61	-75	-88	-100
NF	0.8	294	231	178	134	96	63	34	8	-14	-35	-53	-70	-85	-98	-111	-122
	0.9	264	202	151	107	69	37	9	-16	-39	-59	-77	-93	-108	-121	-133	-145
	1.0	235	174	123	80	44	12	-16	-41	-63	-82	-100	-116	-130	-143	-155	-167
]	1.1	206	146	96	54	18	-13	-40	-65	-86	-105	-122	-138	-152	-165	-177	-188
	1.2	177	119	70	29	-7	-37	-64	-88	-109	-128	-145	-160	-174	-187	-198	-209
	1.3	150	92	44	4	-31	-61	-88	-111	-131	-150	-167	-182	-195	-208	-219	-230
	1.4	122	66	19	-21	-55	-85	-110	-133	-154	-172	-188	-203	-216	-229	-240	-250
							CO2	Budg	get (Er	nisso	ins - G	itc)					

		Temp	Incre	ase:	2.0												
						Climate Sensititivity											
		2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0
	0.0	824	726	645	576	517	466	421	381	346	315	287	261	238	216	197	179
	0.1	784	688	608	541	483	433	389	350	315	284	257	232	209	188	169	151
	0.2	745	651	573	506	449	400	357	319	285	255	227	203	180	160	141	124
	0.3	707	614	537	472	416	368	326	288	255	225	199	174	152	132	114	97
	0.4	669	578	503	439	384	337	295	258	226	197	170	147	125	105	87	71
	0.5	632	543	469	406	353	306	265	229	197	168	143	119	98	79	61	45
Non-CO2	0.6	596	509	436	374	321	276	236	200	169	141	116	93	72	53	35	19
RE	0.7	560	475	403	343	291	246	207	172	141	114	89	66	46	27	10	-5
	0.8	525	441	371	312	261	217	178	144	114	87	63	41	21	2	-14	-30
	0.9	491	409	340	282	232	188	151	117	87	61	37	15	-4	-22	-39	-54
	1.0	458	376	309	252	203	160	123	90	61	35	12	-10	-29	-46	-63	-77
	1.1	425	345	279	223	174	133	96	64	36	10	-13	-34	-53	-70	-86	-101
	1.2	392	314	249	194	147	106	70	38	10	-15	-37	-58	-76	-93	-109	-123
	1.3	360	284	220	166	119	79	44	13	-14	-39	-61	-81	-100	-116	-131	-146
	1.4	329	254	191	138	93	53	19	-12	-39	-63	-85	-104	-122	-139	-154	-167
							CO2	Budg	et (Er	nissoi	ins - G	iTC)					

- Yellow cells show combinations of CS and NonCO2 RF for roughly a 230 GTC budget (roughly that put forward but the IPCC and National Academy of Sciences².
- Orange cells show combinations of CS and NonCO2 RF for roughly a 100 GTC anthropogenic budget
- Green cells show the total CO2 budget for a value of climate sensitivity slightly above that which was demonstrated by the models that best capture current conditions
- Purple cells show the CO2 budget for the non-CO2 radiative forcing for RCP 4.5

The following tables show the GTC over a 230GTC CO2 budget for various combinations of fossil fuel reductions (without BECCS, CCS, or CDR). It basically shows that meeting a 230 GTC CO2 budget requires "massive" BECCS/CCS/CDR, as we'll be lucky to reduce emissions before 2030 and/or reduce emissions more than 1% per year.

- 9.86 2015 Fossil Fuel Emissions (GTC)
- 1.6 **2015 land use emissions (GTC)**
- 2070 Year when land use emissions reach zero
- 0.029 Land use decline/year (GTC

	Peak Yr:		202	.0
	Pct Chg to Peak Yr:	0	1	2
	0	881	923	966
Annual Dat	-1	632	661	691
Change	-2	480	501	523
After Peak	-3	383	400	417
Yr	-4	320	333	347
		Emis	sions 2	016-2100

	2025						
0	1	2					
881	964	1055					
659	718	783					
519	564	613					
428	464	502					
367	397	428					
Emissions 2016-2100							

2030						
0	1	2				
881	1005	1146				
684	776	881				
557	628	709				
472	530	595				
414 462 517						
Emissions 2016-2100						

	Peak Yr:		202	0
	Pct Chg to Peak Yr:	0	1	2
	0	651	693	736
Annual Dat	-1	402	431	461
Change	-2	250	271	293
After Peak	-3	153	170	187
Yr	-4	90	103	117
		GTC	Over E	Budget in
			210	0

2025					
0	1	2			
651	734	825			
429	488	553			
289	334	383			
198	234	272			
137	167	198			
GTC Over Budget in					
2100					

2030						
0	1	2				
651	775	916				
454	546	651				
327	398	479				
242	300	365				
184	232	287				
GTC Over Budget in						
	2100					

	Peak Yr:		202	0
	Pct Chg to Peak Yr:	0	1	2
Annual Dat	0	868	910	953
Annual Pct	-1	548	574	600
Peak Yr	-2	321	334	349
After Peak	-3	238	248	258
Yr	-4	197	205	213
		Emis	sions 2	016-2100

	Peak Yr:		202	0
	Pct Chg to Peak Yr:	0	1	2
Annual Dat	0	638	680	723
Annual Pct	-1	318	344	370
Peak Yr	-2	91	104	119
After Peak	-3	8	18	28
Yr	-4	-33	-25	-17

	2025						
0	1	2					
868	951	1041					
587	655	731					
370	415	466					
288	319	355					
247 272 300							
Emissions 2016-2100							

2025						
0	1	2				
638	721	811				
357	425	501				
140	185	236				
58	89	125				
17	42	70				

2030									
0	0 1								
868	991	1133							
623	734	862							
419	500	601							
337	395	467							
296	342	399							
Emissions 2016-2100									

2030									
0	1	2							
638	761	903							
393	504	632							
189	270	371							
107	165	237							
66	112	169							

The following tables show the expected equilibrium temperature for specific climate sensitivities (3 and 4) for a range of CO2 emissions and Non-CO2 radiative forcings:

		Clima	ate Se	nsititi	ivity	3.0											
		CO2 Emissions															
		-50	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700
	0.0	0.56	0.70	0.84	0.98	1.12	1.26	1.40	1.54	1.68	1.82	1.96	2.10	2.23	2.37	2.51	2.65
	0.1	0.63	0.77	0.91	1.05	1.20	1.34	1.48	1.62	1.76	1.91	2.05	2.19	2.33	2.48	2.62	2.76
	0.2	0.70	0.84	0.99	1.13	1.28	1.42	1.57	1.71	1.85	2.00	2.14	2.29	2.43	2.58	2.72	2.87
	0.3	0.77	0.91	1.06	1.21	1.36	1.50	1.65	1.80	1.95	2.09	2.24	2.39	2.54	2.68	2.83	2.98
	0.4	0.84	0.99	1.14	1.29	1.44	1.59	1.74	1.89	2.04	2.19	2.34	2.49	2.64	2.79	2.94	3.09
	0.5	0.91	1.06	1.22	1.37	1.52	1.68	1.83	1.98	2.13	2.29	2.44	2.59	2.75	2.90	3.05	3.21
Non-CO2	0.6	0.98	1.14	1.30	1.45	1.61	1.76	1.92	2.08	2.23	2.39	2.54	2.70	2.86	3.01	3.17	3.32
RE	0.7	1.06	1.22	1.38	1.54	1.69	1.85	2.01	2.17	2.33	2.49	2.65	2.81	2.97	3.13	3.28	3.44
	0.8	1.13	1.30	1.46	1.62	1.78	1.94	2.11	2.27	2.43	2.59	2.75	2.92	3.08	3.24	3.40	3.56
	0.9	1.21	1.38	1.54	1.71	1.87	2.04	2.20	2.37	2.53	2.70	2.86	3.03	3.19	3.36	3.52	3.69
	1.0	1.29	1.46	1.63	1.80	1.96	2.13	2.30	2.47	2.64	2.81	2.97	3.14	3.31	3.48	3.65	3.81
	1.1	1.37	1.54	1.72	1.89	2.06	2.23	2.40	2.57	2.74	2.92	3.09	3.26	3.43	3.60	3.77	3.94
	1.2	1.46	1.63	1.80	1.98	2.15	2.33	2.50	2.68	2.85	3.03	3.20	3.38	3.55	3.73	3.90	4.07
	1.3	1.54	1.72	1.90	2.07	2.25	2.43	2.61	2.78	2.96	3.14	3.32	3.50	3.67	3.85	4.03	4.21
	1.4	1.63	1.81	1.99	2.17	2.35	2.53	2.71	2.89	3.08	3.26	3.44	3.62	3.80	3.98	4.16	4.34
							E	nuilib	rium 1	Temp	eratur	e					

	Clima	ate Se	nsititi	ivity	3.4												
			CO2 Emissions														
		100	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
	0.0	1.11	1.43	1.58	1.74	1.90	2.06	2.22	2.37	2.53	2.69	2.85	3.01	3.16	3.32	3.48	3.64
	0.1	1.19	1.52	1.68	1.84	2.00	2.16	2.32	2.48	2.64	2.81	2.97	3.13	3.29	3.45	3.61	3.77
	0.2	1.28	1.61	1.77	1.94	2.10	2.27	2.43	2.59	2.76	2.92	3.09	3.25	3.42	3.58	3.74	3.91
	0.3	1.37	1.70	1.87	2.04	2.21	2.37	2.54	2.71	2.87	3.04	3.21	3.38	3.54	3.71	3.88	4.05
	0.4	1.46	1.80	1.97	2.14	2.31	2.48	2.65	2.82	2.99	3.16	3.33	3.50	3.67	3.84	4.02	4.19
	0.5	1.55	1.90	2.07	2.25	2.42	2.59	2.77	2.94	3.11	3.29	3.46	3.63	3.81	3.98	4.16	4.33
Non-CO2	0.6	1.64	2.00	2.18	2.35	2.53	2.71	2.88	3.06	3.24	3.41	3.59	3.77	3.94	4.12	4.30	4.47
RE	0.7	1.74	2.10	2.28	2.46	2.64	2.82	3.00	3.18	3.36	3.54	3.72	3.90	4.08	4.26	4.44	4.62
	0.8	1.84	2.20	2.39	2.57	2.75	2.94	3.12	3.31	3.49	3.67	3.86	4.04	4.22	4.41	4.59	4.77
	0.9	1.94	2.31	2.50	2.68	2.87	3.06	3.25	3.43	3.62	3.81	3.99	4.18	4.37	4.55	4.74	4.93
	1.0	2.04	2.42	2.61	2.80	2.99	3.18	3.37	3.56	3.75	3.94	4.13	4.32	4.51	4.70	4.90	5.09
	1.1	2.14	2.53	2.72	2.92	3.11	3.30	3.50	3.69	3.89	4.08	4.28	4.47	4.66	4.86	5.05	5.25
	1.2	2.24	2.64	2.84	3.03	3.23	3.43	3.63	3.83	4.02	4.22	4.42	4.62	4.82	5.01	5.21	5.41
	1.3	2.35	2.75	2.95	3.16	3.36	3.56	3.76	3.96	4.16	4.37	4.57	4.77	4.97	5.17	5.37	5.58
	1.4	2.46	2.87	3.07	3.28	3.49	3.69	3.90	4.10	4.31	4.51	4.72	4.92	5.13	5.33	5.54	5.74
Equilibrium T								Temp	eratur	re							

		Clima	ite Se	nsititi	ivity	4.0											
		CO2 Emissions															
		100	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
	0.0	1.31	1.68	1.86	2.05	2.24	2.42	2.61	2.79	2.98	3.17	3.35	3.54	3.72	3.91	4.10	4.28
	0.1	1.41	1.78	1.97	2.16	2.35	2.54	2.73	2.92	3.11	3.30	3.49	3.68	3.87	4.06	4.25	4.44
	0.2	1.51	1.89	2.09	2.28	2.47	2.67	2.86	3.05	3.25	3.44	3.63	3.82	4.02	4.21	4.40	4.60
	0.3	1.61	2.00	2.20	2.40	2.59	2.79	2.99	3.19	3.38	3.58	3.78	3.97	4.17	4.37	4.56	4.76
	0.4	1.72	2.12	2.32	2.52	2.72	2.92	3.12	3.32	3.52	3.72	3.92	4.12	4.32	4.52	4.72	4.92
	0.5	1.82	2.23	2.44	2.64	2.85	3.05	3.25	3.46	3.66	3.87	4.07	4.28	4.48	4.68	4.89	5.09
Non-CO2	0.6	1.93	2.35	2.56	2.77	2.98	3.18	3.39	3.60	3.81	4.02	4.22	4.43	4.64	4.85	5.06	5.26
NOIPCO2	0.7	2.05	2.47	2.68	2.89	3.11	3.32	3.53	3.74	3.95	4.17	4.38	4.59	4.80	5.02	5.23	5.44
, M	0.8	2.16	2.59	2.81	3.02	3.24	3.46	3.67	3.89	4.11	4.32	4.54	4.75	4.97	5.19	5.40	5.62
	0.9	2.28	2.72	2.94	3.16	3.38	3.60	3.82	4.04	4.26	4.48	4.70	4.92	5.14	5.36	5.58	5.80
	1.0	2.40	2.84	3.07	3.29	3.52	3.74	3.97	4.19	4.41	4.64	4.86	5.09	5.31	5.53	5.76	5.98
	1.1	2.52	2.97	3.20	3.43	3.66	3.89	4.12	4.34	4.57	4.80	5.03	5.26	5.49	5.71	5.94	6.17
	1.2	2.64	3.10	3.34	3.57	3.80	4.04	4.27	4.50	4.73	4.97	5.20	5.43	5.67	5.90	6.13	6.36
	1.3	2.76	3.24	3.48	3.71	3.95	4.19	4.42	4.66	4.90	5.14	5.37	5.61	5.85	6.08	6.32	6.56
	1.4	2.89	3.38	3.62	3.86	4.10	4.34	4.58	4.83	5.07	5.31	5.55	5.79	6.03	6.28	6.52	6.76
							Ec	quilib	rium 1	Temp	eratur	re					

Note that for CS=3, NonCO2RF=0.8, CO2 emissions of 525 GTC result in an equilibrium temperature of about 3°C and for CS=3.4, NonCO2RF=0.8, CO2 emissions of 420 GTC result in an equilibrium temperature of about 3°C. Since natural emissions are apt to be at least 100 GTC^{1,2} (for a temperature increase less than 2°C), it seems logical to assume that a climate sensitivity of 3 where natural emissions are included is equivalent to a climate sensitivity of 3.5 where natural emissions are not included (and the "equivalence" is apt to be wider for higher temperatures)

1 From What Lies Beneath (download PDF from <u>https://www.breakthroughonline.org.au/)</u> (Page 24)

A carbon budget is an estimate of the total future human-caused greenhouse gas emissions, in tons of carbon, CO_2 or CO_2 equivalent, that would be consistent with limiting warming to a specified figure, such as 1.5°C or 2°C, with a given risk of exceeding the target, such as a 50%, 33% or 10% chance.

The discussion of carbon budgets is frequently opaque. Often, it is difficult to ascertain whether the assumptions are realistic, for example whether a budget includes non-CO₂ forcings such as methane and nitrous oxide. Too often, the risk of failure is not clearly spelt out, especially the fat-tail risks. Contrary to the tone of the IPCC reports, the evidence shows we have no carbon budget for 2°C for a sensible risk-management, low-probability (of a 10%, or one-in-ten) chance of exceeding that target. The IPCC reports fail to say there is no carbon budget if 2°C is considered a cap (an upper boundary not to be exceeded) as per the *Copenhagen Accord*, rather than a target (an aspiration which can be significantly exceeded). The IPCC reports fail to say that once projected emissions from future food production and deforestation are taken into account, there is no carbon budget for fossil-fuel emissions for a 2°C target.⁷¹

Carbon budgets are routinely proposed that have a substantial and unacceptable risk of exceeding specified targets and hence entail large and unmanageable risks of failure.

Research published in December 2017 compared "raw" climate models (used by the IPCC) with models that are "observationally informed" and best capture current conditions. The latter produce 15% more warming by 2100 than the IPCC suggests, thus reducing the carbon budget by around 15% for the 2°C target. Hence, as one example, the actual warming for the RCP4.5 emissions path is in reality likely to be higher, similar to that projected by raw models for RCP6.0.72 (RCPs are representative concentration pathways of greenhouse gas emission trajectories. RCP2.6 is the

lowest and RCP8.5 is the highest.) This is consistent with findings five years earlier that climate model projections which show a greater rise in global temperature are likely to prove more accurate than those showing a lesser rise.⁷³

As well, the IPCC uses a definition of global mean surface temperature that underestimates the amount of warming over the pre-industrial level.

When estimates for the effect of calculating (1) warming for total global coverage rather than for the coverage for which observations are available, (2) warming using surface air temperature measurements (SATs) over the entire globe instead of the observational blend of sea surface temperatures (SSTs) and SATs, and (3) warming from a preindustrial, instead of a late-nineteenth century baseline, are taken into account, the underestimation is around 0.3°C. This results in a significant overestimation of allowable emissions.⁷⁴

For example, for stabilization at 2°C, allowable emissions decrease by as much as 40% when earlier than nineteenthcentury climates are considered as a baseline.⁷⁵

There are also problems with carbon budgets which incorporate "overshoot" scenarios, in which warming exceeds the target before being cooled by carbon drawdown. Pam Pearson, Director of the International Cryosphere Climate Initiative, says that most cryosphere thresholds are determined by peak temperature, and the length of time spent at that peak, warning that "later, decreasing temperatures after the peak are largely irrelevant, especially with higher temperatures and longer duration peaks". Thus "overshoot scenarios", which are now becoming the norm in policymaking circles, hold much greater risks.⁷⁶

2	NAS post 2015 Budget =	https://science2017.globalchange.gov/downloads/CSSR_Ch14_Mitigation.pdf
	236 GTC	
	IPCC post 2015 Budget =	https://docs.google.com/spreadsheets/d/1odltJu_rxabdVXv_pACMBNIRiFSkc_HqJn-
	220 GTC	V8z0av2w/edit#gid=731498129

Recently it has been demonstrated the models that best capture current conditions have a mean value of 3.7°C compared to 3.1°C by the raw model projections³

(See http://ccdatacenter.org/documents/ClimateSensitivityExpectations.pdf for footnotes for the above)

3 Permafrost and wetland emissions could cut 1.5C carbon budget 'by five years'

That means accounting for the impacts of permafrost and wetlands takes around five years off the 1.5C budget. And, as the table below shows, the budgets for the 1.5C overshoot and 2C scenarios are similarly reduced.

	Control		Feedbacks include	ed				
	Tonne of CO2	Years of emissions	Tonne of CO2	Years of emissions				
1.5C	720-929bn	20-25	533-753bn	14-20				
1.5C overshoot	723-947bn	20-26	522-771bn	14-21				
2C	1592-1974bn	43-54	1372-1776bn	37-48				
Table shows remaining carbon budget (from 2018 to 2100) for three temperature pathways for the "control" (left) and "feedbacks included" (right) scenarios. Carbon budgets are shown as tonnes of CO2 and as total years of								

emissions (based on 2017 global emissions). Table adapted from Comyn-Platt et al. (2018)

Note: Including feedbacks for permafrost and wetlands decreases the budgets by about 200 GTCO2. Since there are other feedbacks (peat, soils, surface waters, etc., the total contribution from natural feedbacks is likely closer to 300-400 GTCO2 (perhaps 100 GTC??).

https://www.carbonbrief.org/permafrost-wetland-emissions-could-cut-1-5c-carbon-budget-five-years

Study reveals what natural greenhouse emissions from wetlands and permafrosts mean for Paris Agreement targets

July 9, 2018 by Simon Williams, Centre for Ecology & Hydrology

4

Global fossil fuel emissions would have to be reduced by as much as 20% more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

The additional reductions are equivalent to 5-6 years of carbon emissions from human activities at current rates, according to a new paper led by the UK's Centre for Ecology & Hydrology.

The 2015 Paris Climate Agreement aims to keep "the global average temperature increase to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels".

The research, published in the journal Nature Geoscience today (July 9, 2018) uses a novel form of climate model where a specified temperature target is used to calculate the compatible fossil fuel emissions.

The model simulations estimate the natural wetland and permafrost response to climate change, including their greenhouse gas emissions, and the implications for human fossil-fuel emissions.

Co-author Dr. Sarah Chadburn, of the University of Leeds, said: "We found that permafrost and methane emissions get more and more important as we consider lower global warming targets.

"These feedbacks could make it much harder to achieve the target, and our results reinforce the urgency in reducing fossil fuel burning."

Co-author Prof Chris Huntingford, of the Centre for Ecology & Hydrology, said: <mark>"We were surprised at how large</mark> <mark>these permafrost and wetland feedbacks can be for the low warming target of just 1.5°C."</mark>

https://phys.org/news/2018-07-reveals-natural-greenhouse-emissions-wetlands.html